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Abstract. In algebraic geometry, theorems of Küronya and Lozovanu char-
acterize the ampleness and the nefness of a Cartier divisor on a projective

variety in terms of the shapes of its associated Okounkov bodies. We prove

the analogous result in the context of Arakelov geometry, showing that the
arithmetic ampleness and nefness of an adelic R-Cartier divisor D are deter-

mined by arithmetic Okounkov bodies in the sense of Boucksom and Chen.

Our main results generalize to arbitrary projective varieties criteria for the
positivity of toric metrized R-divisors on toric varieties established by Burgos

Gil, Moriwaki, Philippon and Sombra. As an application, we show that the

absolute minimum of D coincides with the infimum of the Boucksom–Chen
concave transform, and we prove a converse to the arithmetic Hilbert-Samuel

theorem under mild positivity assumptions. We also establish new criteria for

the existence of generic nets of small points and subvarieties.
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1. Introduction

The theory of Okounkov bodies, developed independently by Lazarsfeld and
Mustaţă [LM09] and by Kaveh and Khovanskii [KK12], builds on earlier work
of Okounkov to establish a connection between algebraic geometry and convex
geometry outside of the toric framework. Let D be a big Cartier divisor on a
smooth projective variety X over an algebraically closed field. Given a valuation
of maximal rank ν on the field of rational functions Rat(X), the Okounkov body
of D with respect to ν is the convex set ∆ν(D) ⊆ RdimX defined as the closure of{

ν(s)/n | n ≥ 1, s ∈ Γ(X,nD)×
}

for the Euclidean topology, where Γ(X,nD)× denotes the space of non-zero global
sections of OX(nD). This construction can be considered as a generalization of the
rational polytope determined by a toric divisor on a smooth toric variety [LM09,
§ 6.1]. Since their introduction, Okounkov bodies have attracted a lot of attention
and it has been an active topic of research to describe which geometric properties
and invariants of the pair (X,D) they encode. It turned out that many aspects of

Date: March 11, 2022.

1
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the “toric dictionary” describing the geometry of toric varieties in combinatorial
terms can be extended to all smooth projective varieties by using Okounkov bodies.
Among the numerous efforts on this topic, Küronya and Lozovanu studied in depth
the relations between the positivity of D and its associated Okounkov bodies. They
established remarkable characterizations for the nefness and the ampleness of D in
terms of the shapes of the sets ∆ν(D), when ν varies in suitable families of valu-
ations [KL17a, KL17b]. Although Küronya and Lozovanu worked in characteristic
zero, these characterizations where recently generalized in arbitrary characteristic
by Park and Shin [PS21, Theorem 1.1].

Arakelov theory is a powerful approach to Diophantine geometry, that develops
arithmetic analogues of tools from algebraic geometry to tackle deep problems in
number theory. It allows to study the arithmetico-geometric properties of a pro-
jective variety X defined over a number field (or more generally, a global field) by
looking at its adelic Cartier divisors D, which are usual Cartier divisors equipped
with a suitable collection of metrics. In [BGPS14], Burgos Gil, Philippon and Som-
bra started a program relating the arithmetic geometry of toric varieties to convex
analysis, providing an arithmetic analogue of the toric dictionary in the context
of Arakelov geometry. In joint work with Moriwaki [BGMPS16], they established
criteria based on convex analysis for the positivity of toric adelic R-Cartier divisors
on toric varieties (such as arithmetic nefness and arithmetic ampleness in the sense
of Zhang [Zha95a]). Arithmetic analogues of the notion of Okounkov bodies were
introduced independently by Yuan [Yua09] and by Boucksom and Chen [BC11] in
the context of Arakelov geometry1. Given an adelic Cartier divisor D on a projec-
tive variety X over a number field K, arithmetic Okounkov bodies are known to
encode the following fundamental invariants, under suitable mild assumptions: the
arithmetic volume of D ([Yua09, Theorem A], [BC11, Theorem 2.8]), the height
hD(X) of X with respect to D ([BC11, Theorems 3.1 and 3.7]), and the essential

minimum of the height function ĥD : X(K) → R associated to D ([Bal21a, Corol-
lary 1.7]). In analogy with the geometric situation and in view of the results of
Burgos Gil, Moriwaki, Philippon and Sombra in the toric case, it is natural to ex-
pect that arithmetic Okounkov bodies encode arithmetic ampleness and nefness of
adelic Cartier divisors on non-necessarily toric projective varieties. The main goal
of the present paper is to show that this is indeed the case. Our main results are
analogues of the aforementioned theorems of Küronya and Lozovanu in the context
of Arakelov geometry (see Theorems 1.3 and 1.4 below). In subsections 1.2 and
1.3, we give some applications towards the arithmetic Hilbert-Samuel theorem and
new criteria for the existence of generic nets of small points and subvarieties.

1.1. Main results. Let X be a normal and geometrically integral projective va-
riety of dimension d ≥ 1 over a global field K, and let K be an algebraic closure
of K. An adelic R-Cartier divisor on X is a pair D = (D, (gv)v∈ΣK ) consisting of
an R-Cartier divisor and a suitable collection (gv)v∈ΣK of D-Green functions on
the analytifications Xan

Cv of X, when v varies among the places of K (see Definition
2.1). The notion of adelic R-Cartier divisors is due to Moriwaki [Mor16], and gen-
eralizes the one of adelic line bundles in the sense of Zhang [Zha95b]. Let ν be a
valuation of maximal rank on Rat(XK) (see Definition 4.1). Assuming that D is
big, Boucksom and Chen [BC11] defined a concave function

GD,ν : ∆ν(D)→ R ∪ {−∞}

1Although the constructions of Yuan and of Boucksom and Chen are closely related, they
do not coincide in general (see [BC11, § 4.3]). In this text, we focus on Boucksom and Chen’s
definition.
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called the concave transform of D with respect to ν, which encodes important
information on the arithmetic of the graded linear series

⊕
n∈N Γ(X,nD) (see § 4.2).

Following [BC11, Definition 2.7], we define the arithmetic Okounkov body of D with
respect to ν as

∆̂ν(D) = {(α, t) ∈ ∆ν(D)× R+ | GD,ν(α) ≥ t}.

It is a compact convex subset of Rd+1. In subsection 4.4, we will extend the

definition of ∆̂ν(D) to include the case when D is not big, by using limits of
arithmetic Okounkov bodies in the above sense.

A key notion to study the positivity of an adelic R-Cartier divisor D ∈ D̂iv(X)R
is its associated height function ĥD : X(K) → R, which measures the arithmetic
complexity of closed points on X and also plays a fundamental role in applications
of Arakelov theory to Diophantine geometry. The central result of this paper gives
a lower bound for the height of points in terms of Boucksom and Chen’s concave
transform.

Theorem 1.1 (Theorem 5.1). Let x ∈ XK be a closed point, and let ν be a valuation
of maximal rank on Rat(XK) centered at x. For any adelic R-Cartier divisor

D = (D, (gv)v∈ΣK ) such that D is nef, we have 0Rd ∈ ∆ν(D) and

ĥD(x) ≥ GD,ν(0Rd).

Roughly speaking, at least when D is big one can think of the quantity GD,ν(0Rd)
as a measure of the arithmetic “size” of global sections of multiples of D with
arbitrarily small valuation. The key new ingredient in the proof of Theorem 1.1
is a lower bound for the height of x in terms of the order of vanishing of a small
section at x, that we shall outline at the end of this introduction (§ 1.4). As an
application of Theorem 1.1, we obtain new expressions for the absolute minimum

of D, defined as ζabs(D) = infx∈X(K) ĥD(x). We denote by V(XK) the set of

valuations of maximal rank on Rat(XK).

Corollary 1.2 (Corollary 5.5). Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R be a semi-
positive adelic R-Cartier divisor. Then we have

ζabs(D) = inf
ν∈V(XK)

GD,ν(0Rd),

where the infimum is over all valuations of maximal rank on Rat(XK). Moreover,
if D is big then

ζabs(D) = inf
α∈∆ν(D)

GD,ν(α)

for any ν ∈ V(XK).

The lower bounds for ζabs(D) given in Corollary 1.2 are straightforward conse-
quences of Theorem 1.1, together with the fact that the infimum of the concave
transform does not depend on the choice of the valuation when D is big (see Lemma
4.6). The upper bounds follow from Zhang’s arithmetic Nakai-Moishezon theorem
(Theorem 2.10). We mention that Corollary 1.2 remains valid when V(XK) is re-
placed by any subset of valuations of maximal rank whose centers cover XK (see
Corollary 5.5 for a precise statement). The second equality of Corollary 1.2 is
a counterpart to [Bal21a, Corollary 1.3], where it was shown that the maximum

of GD,ν coincides with the essential minimum of the height function ĥD. These
results give an affirmative answer to a question of Burgos Gil, Philippon and Som-
bra [BGPS15, Remark 3.15], and open new approaches to study the absolute and
essential minima through convex analysis.
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We now present straightforward consequences of Theorem 1.1 and Corollary
1.2 that relate arithmetic positivity to arithmetic Okounkov bodies. Following
[Mor16, BGMPS16], we say that D is nef if it is semi-positive and if ζabs(D) ≥ 0.
The following result is a counterpart to [KL17a, Theorem A] in the context of
Arakelov geometry.

Theorem 1.3 (Corollary 5.3). Let D ∈ D̂iv(X)R be a semi-positive adelic R-
Cartier divisor. The following assertions are equivalent:

(1) D is nef;

(2) for every ν ∈ V(XK), we have 0Rd+1 ∈ ∆̂ν(D);
(3) for every closed point x ∈ XK , there exists a valuation of maximal rank

ν ∈ V(XK) centered at x ∈ XK such that 0Rd+1 ∈ ∆̂ν(D).

We now turn to characterizations of arithmetic ampleness (see Definition 2.6).
In view of the arithmetic Nakai-Moishezon theorem of Zhang (see Theorem 2.10),
it follows from Corollary 1.2 that a semi-positive adelic R-Cartier divisor D =
(D, (gv)v∈ΣK ) is ample if and only if the underlying divisor D is (geometrically)
ample and the concave transform GD,ν has a positive lower bound for some choice

of ν ∈ V(XK) (see Corollary 5.6). By combining this result with characteriza-
tions of geometric ampleness due to Küronya and Lozovanu and to Park and Shin
[KL17a, KL17b, PS21], we shall prove more intrinsic statements relating arithmetic
ampleness to the shapes of arithmetic Okounkov bodies. For example, we obtain

the following theorem when we focus on arithmetic Okounkov bodies ∆̂Ỹ•
(D) de-

fined with respect to valuations arising from infinitesimal flags Ỹ• (Example 4.3).
Given a real number λ ≥ 0, we denote by ∆−1

λ the inverted standard simplex of
size λ ≥ 0 (see [PS21] and § 5.3.2).

Theorem 1.4 (Corollary 5.8). Assume that X is smooth, and let D ∈ D̂iv(X)R be
a semi-positive adelic R-Cartier divisor. The following assertions are equivalent:

(1) D is ample;

(2) there exists a real number λ > 0 such that ∆−1
λ × {λ} ⊆ ∆̂Ỹ•

(D) for every

infinitesimal flag Ỹ• on XK ;
(3) there exists a real number λ > 0 such that for every closed point x ∈ XK ,

there exists an infinitesimal flag Ỹ• over x with ∆−1
λ × {λ} ⊆ ∆̂Ỹ•

(D).

This statement is an analogue of [KL17a, Theorem B] in the context of Arakelov
geometry. We shall also prove a similar result concerning admissible flags (Corollary
5.7), that provides an arithmetic analogue to [KL17b, Corollary 3.2]. In the particu-
lar case where the pair (X,D) is toric and assuming that D is semi-positive, one can
recover the characterizations of arithmetic ampleness and nefness of [BGMPS16,
Theorem 2] from Theorems 1.3 and 1.4 (see Remark 5.9).

1.2. Application to the arithmetic Hilbert-Samuel theorem. Given an adelic

R-Cartier divisor D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R, we denote by

Γ̂(X,D) = {s ∈ Γ(X,D) | ‖s‖v,sup ≤ 1 ∀ v ∈ ΣK}

the set of small sections of D (see § 2.2). We let ĥ0(X,D) = ln #Γ̂(X,D) if K is a

number field, and ĥ0(X,D) = dimk Γ̂(X,D) if K is the function field of a regular
projective curve over a field k. The arithmetic Hilbert-Samuel theorem asserts that

if D is nef, then for any N ∈ D̂iv(X)R we have

(1.1) ĥ0(X,nD +N) =
hD(X)

(d+ 1)!
nd+1 + o(nd+1)
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when n � 1, where hD(X) denotes the height of X with respect to D (see § 2.3).

The identity (1.1) can be reformulated as v̂ol(D) = hD(X), where v̂ol(D) is the

arithmetic volume of D (see § 2.2 and Remark 6.2). When K is a number field, the
arithmetic Hilbert-Samuel theorem was originally proved by Gillet and Soulé as a
consequence of the arithmetic Riemann-Roch theorem, under the hypothesis that
D is an ample adelic Cartier divisor and that the metrics at the non-Archimedean
places are given by a global projective model over the ring of integers of K (see
[GS92, Theorems 8 and 9]). In the level of generality considered above, it was proved
by Moriwaki by using the continuity of arithmetic volumes (see [Mor09, Theorem
A], [Mor16, Theorem 5.3.2] and Theorem 2.8 infra). As a consequence of Theorem
1.1, we shall establish a converse to the arithmetic Hilbert-Samuel theorem, proving
that (1.1) is actually a criterion for nefness when D is semi-positive and D is big.

Theorem 1.5 (Corollary 6.1). Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R be semi-positive.
If D is big, the following conditions are equivalent:

(1) D is nef;

(2) v̂ol(D) = hD(X);

(3) for any N ∈ D̂iv(X)R, we have

ĥ0(X,nD +N) =
hD(X)

(d+ 1)!
nd+1 + o(nd+1).

To our knowledge, this result was only known under the additional assumption
that d = 1 [Mor16, Theorem 7.3.1] or that (X,D) is toric [BGMPS16, Corollary
6.2] up to now. Theorem 1.5 is a direct consequence of Corollary 1.2 thanks to
fundamental formulae due to Boucksom and Chen relating arithmetic volumes to
the concave transform (see Theorem 4.7).

1.3. Application to generic nets of small points and subvarieties. Let D =

(D, (gv)v∈ΣK ) ∈ D̂iv(X)R be a semi-positive R-Cartier divisor on X such that D
is big. By a theorem of Zhang [Zha95a, Theorem 5.2] (see Theorem 6.5 infra), we
have

(1.2) lim
m
ĥD(pm) ≥ ĥD(X) :=

hD(X)

(d+ 1) degD(X)

for any generic net of points (pm)m in XK (see Definition 6.4). In their seminal
article [SUZ97], Spziro, Ullmo and Zhang pioneered the study of the limit distri-
bution of Galois orbits of a generic net of points for which equality occurs in (1.2).
Their work has proven to have remarkable applications towards the Bogolomov
conjecture, and has been widely generalized by many authors. We refer the reader
to [BGPRLS19, Introduction] for a more detailed introduction to this topic. These
results lead naturally to the following question: under which conditions does there
exist a generic net of points (pm)m in XK such that equality holds in (1.2)? In
[Bal21a, Theorem 1.5], it was shown that such a net exists if and only if GD,ν is

constant for any valuation of maximal rank ν ∈ V(XK). Combining this result with
Corollary 1.2, we shall prove the following theorem.

Theorem 1.6 (Theorem 6.6). Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R be semi-positive,
with D big. The following conditions are equivalent:

(1) there exists a generic net of points (pm)m in XK such that

lim
m
ĥD(pm) = ĥD(X);

(2) there exists a generic net of subvarieties (Ym)m in XK such that

lim
m
ĥD(Ym) = ζabs(D);
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(3) we have ĥD(x) ≥ ĥD(X) for every closed point x ∈ XK ;

(4) we have ĥD(Y ) ≥ ĥD(X) for every subvariety Y ⊆ XK with degD(Y ) > 0.

It is worth to note that this statement shows in particular that Yuan’s theorems
on equidistribution of Galois orbits of small points and subvarieties [Yua08, The-
orem 3.1 and Theorem 3.6] actually share the same assumption. We recall them
below in a single concise statement.

Theorem 1.7 (Yuan). Assume that K is a number field. Let D = (D, (gv)v∈ΣK ) ∈
D̂iv(X) be a semi-positive adelic Cartier divisor on X with D ample. For any
generic net of subvarieties (Ym)m in XK such that

lim
m
ĥD(Ym) = ζabs(D)

and for any place v of K, the Galois orbits of (Ym)m are equidistributed in the
analytic space Xan

Cv with respect to the measure c1,v(D)d/ degD(X).

In the above statement, the notion of equidistribution of Galois orbits is to be
understood in the sense of [Yua08, § 3].

1.4. Ideas of proof. Let D ∈ D̂iv(X)R be an adelic R-Cartier divisor. The main
new ingredient in our proof of Theorem 1.1 is the following result controlling the
height of a point x in terms of the order of vanishing ordx s at x of small section

s ∈ Γ̂(X,D). It can be interpreted as an adelic version of Cauchy’s inequality for
the global sections of D.

Proposition 1.8 (Proposition 3.1). Assume that D ∈ Div(X) is an ample Cartier
divisor. Let x ∈ XK be a regular closed point and ε > 0 a real number. There exists

ρ(D,x, ε) ∈ R such that

(1.3) ĥD(x) + ε ≥ −ρ(D,x, ε)
ordx s

m

for any positive integer m and for any non-zero small section s ∈ Γ̂(X,mD).

In order to sketch the proof of this proposition, we assume that x ∈ X(K) is a

K-rational point for simplicity. Given a small section s ∈ Γ̂(X,mD), we construct
a local section ∂s ∈ OX(mD) not vanishing at x by applying to s a differential
operator of order ordx s. For every place v ∈ ΣK , we apply Cauchy’s inequality
in severable variables on a suitable polydisc of radius ρv > 0 in XCv to prove an
inequality of the form

(1.4) ‖∂s(x)‖v ≤ αv(ρv)mρ− ordx s
v ‖s‖v,sup ≤ αv(ρv)mρ− ordx s

v ,

where αv(ρv) is an error term controlling the behaviour of a trivialization of OX(D)
on the polydisc. Using that everything is defined over K, we show that there exists
a finite set P of places (depending only on D and x) such that for every v ∈ ΣK \P,
we can choose ρv = 1 and ensure that αv(ρv) = 1 (see Claims 3.2 and 3.3). By
definition, we have

mĥD(x) = −
∑
v∈ΣK

nv(K) ln ‖∂s(x)‖v

where nv(K) is the local weight of K at v (see § 1.6.4). Therefore summing up the
inequalities (1.4) gives the lower bound

ĥD(x) +
∑
v∈P

nv(K) ln(αv(ρv)) ≥ −
ordx s

m
×
∑
v∈P

nv(K) ln(1/ρv).
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Proposition 1.8 follows by choosing ρv sufficiently small for every v ∈ P, and by
using the fact that limρv→0 ln(αv(ρv)) = 0 (which is a direct consequence of the
continuity of the metrics).

We now briefly explain how Proposition 1.8 implies Theorem 1.1 in the case
where X is smooth and D ∈ Div(X) is an ample Cartier divisor. The general
case follows by using de Jong’s alteration theorem and continuity arguments (see
Lemma 4.13). Let x ∈ XK be a closed point and let ν ∈ V(XK) be a valuation of
maximal rank centered at x. The point is to observe that if GD,ν(0Rd) > 0, then

for any σ > 0, there exist an integer m > 0 and a small section s ∈ Γ̂(X,mD) such
that ordx(s) < mσ (see Claim 5.2). Applying Proposition 1.8 and letting σ tend to

zero shows that ĥD(x) + ε ≥ 0 for every ε > 0. This gives the implication

GD,ν(0Rd) > 0 =⇒ ĥD(x) > 0,

and the inequality of Theorem 1.1 follows by rescaling metrics.

1.5. Organization of the paper. In section 2 we recall the definition and basic
properties of adelic R-Cartier divisors. Section 3 contains the main new technical
ingredient of this paper, namely the proof of Proposition 1.8 (see Proposition 3.1).
In section 4 we recall the definition of the Boucksom–Chen concave transform and
we define arithmetic Okounkov bodies; the only new material in this section is a
slight generalization of Boucksom and Chen’s construction, for which we do not
require the underlying divisor D to be big (§§ 4.3 and 4.4). In section 5, we prove
Theorem 1.3, Corollary 1.2, and Theorem 1.4. Finally, we present applications
to the arithmetic Hilbert-Samuel theorem and to generic nets of small points and
subvarieties in section 6, where we prove Theorems 1.5 and 1.6.

1.6. Conventions and terminology.

1.6.1. A scheme is integral if it is reduced and irreducible. A variety over a field
K is an integral scheme of finite type on SpecK. Given a normal variety X over
K, we denote by Div(X) the group of Cartier divisors on X, and by Rat(X) the
function field of X. If K denotes Z, Q or R, we let Div(X)K = Div(X) ⊗Z K and
Rat(X)×K = Rat(X)× ⊗Z K. For any D ∈ Div(X)R, we define the set of non-zero
rational K-sections of D as

Rat(X,D)×K := Rat(X)×K × {D},
and the set of non-zero global K-sections of D as

Γ(X,D)×K = {(φ,D) ∈ Rat(X,D)×K | (φ) +D ≥ 0}.
When K = Z, we shall omit the subscript Z in the above notations. The support
Supp(D) of D ∈ Div(X)R is defined as the support of the R-Weil divisor associated
to D. For any field extension K ′ of K, we let XK′ = X ×K K ′ and we denote by
DK′ the pullback of D to XK′ . A subvariety Y of XK′ is an irreducible Zariski-
closed subset of XK′ equipped with the reduced induced scheme structure. For any
D ∈ Div(X)R, the degree of a subvariety Y ⊆ XK with respect to D is defined as

degD(Y ) = DdimY
K

· Y , where K is an algebraic closure of K.

1.6.2. Let S be a Noetherian integral scheme with function field Rat(S) and let
X be a projective variety over Rat(S). Given a dense open subset U ⊆ S, a model
of X over U is an integral scheme equipped with a projective morphism π : X → U
such that X = X ×U Rat(S). Let D ∈ Div(X)R, that is D =

∑n
i=1 aiDi for some

Cartier divisors D1, . . . , Dn on X and a1, . . . , an ∈ R. We assume that for each
i ∈ {1, . . . , n} there exists a Cartier divisor Di on X such that Di ∩X = Di, and
we let D =

∑n
i=1 aiDi. The pair (X ,D) is called a model of (X,D) over U . We say
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that the model (X ,D) is relatively nef if D is relatively nef with respect to π (see
[Mor16, 0.5.6]).

1.6.3. Let K0 denote either Q or the field of functions k(T ), where k is an arbitrary
field. By definition, a global field K is a finite extension of K0. We denote by ΣK
the set of places of K, and by ΣK,∞ ⊆ ΣK the set of Archimedean places (which
is empty if K0 = k(T )). For any v ∈ ΣK , we let Kv be the completion of K with
respect to v and K0,v be the completion of K0 with respect to the restriction of v
to K0. We fix an algebraic closure of Kv, and we denote by Cv its completion.

1.6.4. We shall normalize absolute values on a global field K. Assume first that
K is a number field. For each place v ∈ ΣK , we let |.|v be the unique absolute
value on K satisfying the following property : |p|v = p−1 if v is a finite place over
a prime number p, and |.|v = |.| is the restriction of the usual absolute value on C
if v is Archimedean. For each v ∈ ΣK , we let nv(K) = [Kv : Qv]/[K : Q]. We now
assume that K is a finite extension of K0 = k(T ) for some field k. Equivalently,
K = Rat(CK) is the function field of a regular projective curve CK over k equipped
with a finite morphism ϕK : CK → P1

k, unique up to k-isomorphism. The set of
places of K is in one-to-one correspondence with the set of closed points of CK .
For each v ∈ ΣK and each f ∈ K× = Rat(CK)×, we denote by ordv(f) the order
of f in the discrete valuation ring OCK ,v and by ev(ϕK) the ramification index
of ϕK : CK → P1

k at v ∈ CK . We consider the absolute value |.|v on K given by

|f |v = e− ordv(f)/ev(ϕK) and we let

nv(K) =
ev(ϕK)[κ(v) : k]

[K : K0]
,

where κ(v) denotes the residue field of v in CK .

1.6.5. Let K be a global field and let X be a scheme of finite type on SpecK. For
any place v ∈ ΣK and for any subscheme U ⊆ XCv = X ×K SpecCv, we denote
by Uan the analytification of U in the sense of Berkovich [Ber90] (see [BGPS14,
§ 1.2] and [Mor16, § 1.3] for a short introduction). Note that U(Cv) is a dense
subset of Uan. If U = SpecA is affine, then the underlying set of Uan is the set of
multiplicative semi-norms on A extending |.|v. In that case, we write |a(z)|v = |a|z
for a ∈ A and z = |.|z ∈ Uan.

1.6.6. Throughout this paper, X denotes a normal and geometrically integral pro-
jective variety of dimension d ≥ 1 over a global field K. We fix an algebraic closure
K of K, and we let S be the scheme defined as follows:

• if K is a number field with ring of integers OK , S = SpecOK ;
• if K is a finite extension of k(T ) for some field k, S = CK is a regular

projective curve over k such that Rat(CK) = K.

2. Adelic R-Cartier divisors

In this section we define adelic R-Cartier divisors and we recall various notions
of positivity. We mainly follow [Mor16] and [BGMPS16].

2.1. Definitions. Let D ∈ Div(X)R and v ∈ ΣK . We consider an open cover-
ing XCv = ∪`i=1Ui such that DCv is defined by fi ∈ Rat(XCv )×R on Ui for each
i ∈ {1, . . . , `}. A continuous (respectively smooth) D-Green function on Xan

Cv is a
function

gv : Xan
Cv \ (SuppDCv )an → R

such that gv + ln |fi|2v extends to a continuous (respectively smooth) function on
the analytification Uan

i of Ui for each i ∈ {1, . . . , `}. We refer the reader to [Mor16,
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sections 1.4 and 2.1] for more detail on Green functions. If (X ,D) is a model of
(X,D) over a dense open subset U ⊆ S, then for each v ∈ U we denote by gD,v the
D-Green function on Xan

Cv induced by D (see [Mor16, § 0.2]).

Definition 2.1. An adelic R-Cartier divisor on X is the data D = (D, (gv)v∈ΣK )
of an R-Cartier divisor D ∈ Div(X)R and, for each place v ∈ ΣK , of a continuous
D-Green function gv : Xan

Cv → R such that the following conditions are satisfied:

(1) for each v ∈ ΣK , gv in invariant under the action of Gal(Cv/Kv);
(2) there exists a model (X ,D) of (X,D) over a dense open subset U ⊆ S such

that gv = gD,v for every v ∈ U .

We denote by D̂iv(X)R the R-vector space of adelic R-divisors. Since X is
normal, we have inclusions Div(X) ⊆ Div(X)Q ⊆ Div(X)R. Therefore we can

consider the subgroups D̂iv(X), D̂iv(X)Q of D̂iv(X)R defined by

D̂iv(X) = {D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R | D ∈ Div(X)}
and

D̂iv(X)Q = {D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R | D ∈ Div(X)Q}.
The elements of D̂iv(X) (respectively D̂iv(X)Q) are called adelic Cartier divisors
(respectively adelic Q-Cartier divisors) on X.

Example 2.2. Let (ξv)v∈ΣK be a collection of real numbers such that ξv = 0 for

all except finitely many v ∈ ΣK . Then ξ = (0, (ξv)v∈ΣK ) ∈ D̂iv(X). The arithmetic
degree of ξ is defined as

d̂eg(ξ) :=
1

2

∑
v∈ΣK

nv(K)ξv.

2.2. Small sections and arithmetic volume. Let D = (D, (gv)v∈ΣK ) be an
adelic R-Cartier divisor on X, and let s = (φ,D) ∈ Rat(X,D)×R . We let div(s) =
(φ) +D ∈ Div(X)R. For any z ∈ Xan

Cv \ (Supp(div(s)))an
Cv , we define

‖s(z)‖v = |φv(z)|v exp(−gv(z)/2),

where φv is the pull-back of φ to XCv . If s ∈ Γ(X,D)×R , then z 7→ ‖s(z)‖v extends
to a continuous function on Xan

Cv (see [Mor16, Propositions 1.4.2 and 2.1.3]). In that
case, we let ‖s‖v,sup = supz∈Xan

Cv
‖s(z)‖v and we say that s is small if ‖s‖v,sup ≤ 1

for all v ∈ ΣK . We denote by Γ̂(X,D)× (respectively Γ̂(X,D)×R ) the set of small
non-zero global sections (respectively small non-zero R-global sections) of D. We

let Γ̂(X,D) = Γ̂(X,D)× ∪ {0}, and we set

ĥ0(X,D) =

{
ln #Γ̂(X,D) if K0 = Q,

dimk Γ̂(X,D) if K0 = k(T ).

We define the arithmetic volume of D as

v̂ol(D) :=
1

[K : K0]
lim sup
n→∞

ĥ0(X,nD)

nd+1/(d+ 1)!
.

The arithmetic volume satisfies the following continuity property, due to Moriwaki
[Mor16, Theorem 5.2.1] (see also [CM19, Theorem 6.4.24]): for any adelic R-Cartier

divisor D
′ ∈ D̂iv(X)R, we have

(2.1) lim
ε→0

v̂ol(D + εD
′
) = v̂ol(D).

2.3. Height function and semi-positivity. Throughout this subsection, we fix
an adelic R-Cartier divisor D = (D, (gv)v∈ΣK ) on X.
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2.3.1. Height of points. Let x ∈ XK be a closed point, and let K ′ be a finite
extension of K such that x ∈ X(K ′). Let w ∈ ΣK′ and let σw : K ′w ↪→ Cv be a Kv-
embedding, where v denotes the restriction of w to K. The pair (x, σw) uniquely
determines a point xw ∈ XCv (Cv). By [Mor16, § 4.2], there exists s ∈ Rat(X,D)×R
such that x /∈ Supp(div(s)K′). By Galois invariance of gv, the quantity ‖s(x)‖w :=
‖s(xw)‖v does not depend on the choice of σw. We define the height of x with
respect to D as

ĥD(x) = −
∑

w∈ΣK′

nw(K ′) ln ‖s(x)‖w.

It does not depend on the choices of s and K ′.

2.3.2. Semi-positivity and height of subvarieties. In order to define the height of
higher dimensional subvarieties, we recall the notion of semi-positive adelic R-
Cartier divisors used in [BGMPS16].

Definition 2.3. We say that D is semi-positive if for each v ∈ ΣK , there exists a
sequence (gn,v)n∈N satisfying the following conditions:

• if v is Archimedean, gn,v is a smooth plurisubharmonic D-Green function
invariant under complex conjugation for every n ∈ N;
• if v is non-Archimedean, then for every n ∈ N there exists a relatively

nef model (Xn,Dn) of (XKv , DKv ) over the valuation ring of Kv such that
gn,v = gDn,v;
• for every v ∈ ΣK , (gn,v)n∈N converges uniformly to gv.

Remark 2.4. (1) Let U ⊆ S be a dense open subset as in Definition 2.1, that is
there exists a model (X ,D) of (X,D) over U such that gv = gD,v for every

v ∈ U . If D is semi-positive, then (X ,D) is relatively nef by [Mor16, Corollary
A.3.2]. In particular, D is nef.

(2) If K is a number field, D is semi-positive if and only if it is relatively nef in the
sense of [Mor16, Definition 4.4.1]. Moreover, our definition of semi-positivity
coincides with the one of [Bal21a, Definition 3.9] by [Mor16, Proposition 4.4.2].

Assume that D is semi-positive and let Y ⊆ X be a subvariety. We denote by
hD(Y ) the height of Y with respect to D as defined in [BGMPS16, page 225]. By
[BGPS14, Proposition 1.5.10], this definition is invariant by finite field extension; in
particular, we can define the height hD(Y ) of any subvariety Y ⊆ XK . If Y ⊆ XK

is a subvariety with degD(Y ) 6= 0, the normalized height of Y with respect to D is
defined as

ĥD(Y ) =
hD(Y )

(dimY + 1) degD(Y )
.

We gather some basic properties of heights in the following remark.

Remark 2.5. (1) If x ∈ XK is a closed point, then ĥD({x}) = hD({x}) = ĥD(x)
coincides with the height of x defined in § 2.3.1 (here {x} is considered as a
subvariety of XK).

(2) Let ξ = (0, (ξv)v∈ΣK ) ∈ D̂iv(X) be such that d̂eg(ξ) = 1, and letD(t) := D−tξ
for some real number t ∈ R. For any subvariety Y ⊆ XK , we have

hD(t)(Y ) = hD(Y )− t(dimY + 1) degD(Y ).

In particular, if degD(Y ) 6= 0 then ĥD(t)(Y ) = ĥD(Y ) − t. This follows from

the Bézout formula [BGMPS16, (3.13) page 225] by induction on dimY .
(3) Assume that K is a function field and that there exists a CK-model (X ,D)

of (X,D) with gv = gD,v for every place v ∈ ΣK . Then for any subvariety
Y ⊆ X such that Y := Y ∩X 6= ∅, we have hD(Y ) = DdimY · Y.
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2.4. Positivity of adelic R-Cartier divisors. Let D = (D, (gv)v∈ΣK ) be an
adelic R-Cartier divisor on X. We define the absolute minimum of D as

ζabs(D) = inf
x∈XK

ĥD(x) ∈ R ∪ {−∞}.

We recall below different notions of arithmetic positivity, following [BGMPS16,
Definition 3.18].

Definition 2.6. We say that D is

(1) big if v̂ol(D) > 0;
(2) pseudo-effective if D+A is big for any big adelic R-Cartier divisor A on X;
(3) nef if D is semi-positive and if ζabs(D) ≥ 0;
(4) generated by strictly small R-sections if for every x ∈ XK , there exists

s ∈ Γ̂(X,D)×R such that x /∈ Supp(div(s)K) and∑
v∈ΣK

nv(K) ln ‖s‖v,sup < 0;

(5) ample if the following three conditions hold:
• D is ample,
• D is semi-positive,
• D is generated by strictly small R-sections.

Remark 2.7. By [BGMPS16, Proposition 3.23], our definition of pseudo-effective
adelic R-Cartier divisors coincides with the one of [BGMPS16, Definition 3.18].

The following generalization of the arithmetic Hodge index Theorem is due to
Moriwaki.

Theorem 2.8 (Moriwaki). If D is semi-positive, then hD(X) ≤ v̂ol(D), with equal-

ity if D is nef.

Proof. When K is a number field, this is [Mor16, Theorem 5.3.2]. When K is a
function field, by arguing as in [Mor16] it is enough to prove the result under the
additional following assumption: D ∈ Div(X) and there exists a normal CK-model
(X ,D) of (X,D) such that D ∈ Div(X ) is a relatively ample Cartier divisor on X
with gv = gD,v for every v ∈ ΣK . In that case the result follows from the asymptotic
Riemann-Roch theorem as in [Bal21a, Proof of Theorem 7.3]. �

Corollary 2.9. For any semi-positive D ∈ D̂iv(X)R, we have

ζabs(D) = inf
Y⊆XK

degD(Y )>0

ĥD(Y ),

where the infimum is over the subvarieties Y ⊆ XK such that degD(Y ) > 0.

Proof. Assume that ζ := ζabs(D) ∈ R, and define D(ζ) as in Remark 2.5 (2). Then

ĥD(ζ)(Y ) = ĥD(Y )−ζ for any subvariety Y ⊆ XK with degD(Y ) > 0. In particular,

D(ζ) is nef and thus ĥD(ζ)(Y ) ≥ 0 by Theorem 2.8. Therefore

inf
Y⊆XK

degD(Y )>0

ĥD(Y ) ≥ ζabs(D).

The other inequality is obvious, since degD({x}) = 1 for every x ∈ XK . �

The following theorem is an arithmetic version of the Nakai–Moishezon criterion.
Over a number field, it was originally proved by Zhang [Zha95a, Corollary 4.8] for
hermitian line bundles, and it was recently generalized to adelic R-Cartier divisors
in [Bal21b].
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Theorem 2.10. The following conditions are equivalent:

(1) D is ample;
(2) D is semi-positive, D is ample and ζabs(D) > 0;

(3) D is semi-positive, D is ample and ĥD(Y ) > 0 for every subvariety Y ⊆
XK .

Proof. The implication (1) ⇒ (3) follows from the Bézout formula [BGMPS16,
(3.13) page 225] by induction on dimY . We shall prove that (3)⇒ (2) by induction

on d. Since ĥD(X) > 0 by assumption, there exists a closed subscheme Y  XK

such that infx∈XK\Y ĥD(x) > 0 by [Bal21a, Theorem 1.5]. On the other hand

infx∈Y hD(x) > 0 by the induction hypothesis, and therefore (2) holds. If K is a
number field, the implication (2)⇒ (1) is a direct consequence of [Bal21b, Theorem
1.1]. Assume that K is a function field. We shall prove that (2) ⇒ (1) under the
following additional assumption: there exists a relatively nef model (X ,D) of (X,D)
over CK such that gv = gD,v for every v ∈ ΣK . The general case follows by semi-

positivity. Let ζ be a positive real number with ζ < ζabs(D). Then ĥD(Y ) > ζ for
any subvariety Y ⊆ XK by Corollary 2.9. Let F ∈ Div(X ) be a general fiber of
X → CK and let Y ⊆ X be subvariety such that Y := Y ∩ XK 6= ∅. By Remark
2.5 (2) and (3), we have

(D − ζF)dimY · Y = (dimY) degD(Y )(ĥD(Y )− ζ) > 0.

By [Bir17, Theorem 1.3], the set ⋂
s∈Γ(X ,D−ζF)×R

Supp(div(s))

does not intersect X. Therefore, for every point x ∈ XK , there exists s ∈ Γ(X ,D−
ζF)×R such that x /∈ Supp(div(s|X)). By construction, such s|X ∈ Γ(X,D)×R is a

stricly small R-section for D and we are done. �

Corollary 2.11. Assume that D is ample and that D is semi-positive. Then there
exists a subvariety Y ⊆ XK such that

ζabs(D) = ĥD(Y ).

Proof. Let ζ = ζabs(D), and define D(ζ) as in Remark 2.5 (2). Then ζabs(D(ζ)) =
ζabs(D) − ζ = 0. By Theorem 2.10, there exists a subvariety Y ⊆ XK such that

ĥD(Y )− ζabs(D) = ĥD(ζ)(Y ) = 0. �

3. Cauchy’s inequality for adelic Cartier divisors

The goal of this section is to prove Proposition 3.1 below, which is the main
new ingredient of this paper. It can be considered as an adelic version of Cauchy’s
inequality, as it gives a lower bound for the height of a closed point x ∈ XK in
terms of the height of a global section and its order of vanishing at x.

3.1. Differentiation of global sections. Let z = (z1, . . . , zd) be a system of
parameters centered at a closed regular point x ∈ XK , that is a system of generators

with d elements of the maximal ideal of OXK,x . For any α = (α1, . . . , αd) ∈ Nd,
we let zα = zα1

1 · · · z
αd
d and |α| := α1 + · · ·+αd. Since x is regular, the completion

ÔXK ,x of the local ring OXK ,x is naturally isomorphic to K[[z1, . . . zd]]. Therefore,
any f ∈ OXK ,x has a unique expression

f =
∑
α∈Nd

∂α
z f(x)zα,
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where ∂α
z f(x) ∈ K for every α ∈ Nd. Let D ∈ Div(X) and let s0 ∈ Γ(U,DK) be

a trivialization of OX(D)K on a neighbourhood U ⊆ XK of x. Given a non-zero
global section s ∈ Γ(X,D)×, there exists f ∈ OXK (U) such that s|U = f · s0. We
define the order of s at x by

ordx s = min{|α| | ∂α
z f(x) 6= 0}.

Note that ordx s does not depend on the choice of the system of parameters z. By
Leibniz’s formula, it is also independent of s0.

3.2. Height of global sections. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X) and let s =
(φ,DK′) ∈ Γ(XK′ , DK′)

×, where K ′ is a finite extension of K. Let w ∈ ΣK′ and
σw : K ′w ↪→ Cv be a Kv-embedding, where v is the restriction of w to K. We denote
by σ̃w : XCv → XK′ the morphism induced by σw. The function

z ∈ Xan
Cv \ Supp(σ̃∗w div(s))an 7→ ‖s(z)‖w := |σ̃∗wφ(z)|v exp(−gv(z)/2) ∈ R

extends to Xan
Cv and does not depend on the choice of σw. We let ‖s‖w,sup =

supz∈Xan
Cv
‖s(z)‖w and we define the height of s with respect to D as

hD(s) =
∑

w∈ΣK′

nw(K ′) ln ‖s‖w,sup.

This definition is invariant by finite field extension. In particular, we can define the
height hD(s) of any global section s ∈ Γ(XK , DK)×.

3.3. Cauchy’s inequality for global sections. Given a closed point x ∈ XK and

an adelic Cartier divisor D ∈ D̂iv(X), it follows from the definitions that ĥD(x) ≥
−hmD(s)/m for any integer m ≥ 1 and any global section s ∈ Γ(XK ,mDK)× such
that s(x) 6= 0. It is natural to ask whether a similar result holds even if s vanishes
at x. The following proposition gives an answer to this question, that will be central
in our proof of Theorem 1.3.

Proposition 3.1. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X) be an adelic Cartier divisor,
and assume that D is ample. Let x ∈ XK be a regular closed point and let ε > 0 be

a real number. There exists a real number ρ(D,x, ε) such that

(3.1) ĥD(x) + ε ≥ − 1

m
(hmD(s) + ρ(D,x, ε) ordx s)

for any positive integer m and for any s ∈ Γ(XK ,mDK)×.

Proof. We assume that x ∈ X(K) is a K-rational point without loss of generality.
After possibly replacing D by a suitable multiple, we also assume that OX(D) is
very ample. Let ϕ : X ↪→ PNK be a closed immersion such that OX(D) = ϕ∗OPNK (1).

By Bertini’s theorem [Laz04, Example 5.2.14], there exist homogeneous coordinates
(T0, . . . , TN ) on PNK such that x /∈ U := X \ div(T0) and the projection on the first
d+ 1 coordinates induces a well-defined finite morphism qX : X → PdK , étale at x.

We denote by q : U(K) → K
d

the restriction of qX to U(K), and we write q(x) =
(x1, . . . , xd) ∈ Kd. For any v ∈ ΣK , q induces a morphism qv : UCv (Cv)→ Cdv, and
given a real number ρ > 0 we let

Dv(ρ) = {z = (z1, . . . , zd) ∈ Cdv | max
1≤i≤d

|zi − xi|v < ρ}.

Moreover, we let si = ϕ∗Ti ∈ Γ(X,D) for each i ∈ {0, . . . , d}. Let us prove the
following claim.

Claim 3.2. There exists a finite subset P1 ⊂ ΣK such that ‖s0(y)‖v = 1 for every
v ∈ ΣK \ P1 and every y ∈ q−1

v (Dv(1)).
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Proof. Let (X ,D) be a model of (X,D) over a dense open subset U ⊆ S such
that gv = gD,v for every v ∈ U . After possibly shrinking U , there exist global
sections s0, . . . , sd ∈ Γ(X ,D) such that si|X = si for every i ∈ {0, . . . , d} and

∩di=0 div(si) = ∅. The sections s0, . . . , sd induce a morphism qX : X → PdU that
extends qX : X → PdK . Let v ∈ U and let qX,v : XCv → PdCv be the base change of

qX : X → PdK . We denote by C◦v the valuation ring of Cv and by C◦◦v its maximal
ideal. For any i ∈ {0, . . . , d}, we let si,v ∈ Γ(XC◦v/C◦◦v ,DC◦v/C◦◦v ) be the pullback of
si to XC◦v/C◦◦v = X ×U Spec(C◦v/C◦◦v ). We have a commutative diagram

XCv XC◦v/C◦◦v

PdCv PdC◦v/C◦◦v ,

qX,v

redX,v

qX ,v

redPd,v

where redX,v, redPd,v are the reduction maps (see [Mor16, section 1.3]) and qX ,v
is the morphism given by z 7→ (s0,v(z) : · · · : sd,v(z)). Let y ∈ q−1

v (Dv(1)). Then
by definition of redPd,v we have redPd,v(qX,v(y)) = (1 : y1,v : · · · : yd,v) for some

(y1,v, . . . , yd,v) ∈ (C◦/C◦◦v )d. On the other hand,

redPd,v(qX,v(y)) = qX ,v(redX,v(y)) = (s0,v(redX,v(y)) : · · · : sd,v(redX,v(y)))

and therefore s0,v(redX,v(y)) 6= 0. Since gv = gD,v, it follows that ‖s0(y)‖v = 1
by definition of gD,v (see [Mor16, section 0.2]). The claim follows by taking P1 =
ΣK \ (U ∪ ΣK,∞). �

We also need the following claim, which is a direct consequence of a multivariable
version of Hensel’s lemma due to Vojta [Voj93, Corollary 15.13].

Claim 3.3. There exists a collection of positive real numbers (ρv)v∈ΣK and a finite
set P2 ⊂ ΣK such that

(1) for every v ∈ ΣK , the map qv admits an analytic section σv : Dv(ρv) →
UCv (Cv) on Dv(ρv), and

(2) ρv = 1 for every v ∈ ΣK \ P2.

Proof. Since q is étale at x, there exist an integer n ∈ N and polynomials f1, . . . , fn ∈
K[T1, . . . , Td, S1, . . . , Sn] such that

U ∼= Spec

(
K[T1, . . . , Td, S1, . . . , Sn]

(f1, . . . , fn)

)
,

and
Jf (x) := ((∂fj/∂Sj)(x))1≤i,j≤n ∈ GLn(K).

By the multivariable Hensel’s lemma [Voj93, Corollary 15.13], for every place v ∈
ΣK there exists a real number ρv > 0 together with an analytic section

σv : Dv(ρv) −→ UCv (Cv)
of qv, and moreover we can take ρv = |det Jf (x)|2v for all except finitely many places
v (note that the proof of [Voj93, Corollary 15.13] remains valid in the function field
case, since [Voj93, Corollary 15.3] deals with an arbitrary non-Archimedean valued
field). Since det Jf (x) ∈ K×, there exists a finite set P2 ⊂ ΣK such that ρv = 1 for
every v ∈ ΣK \ P2.

�

Let P1,P2 ⊂ ΣK and (ρv)v∈ΣK be as in Claims 3.2, 3.3 and let P = P1 ∪ P2.
For every v ∈ ΣK and ρ ∈ (0, ρv], we let Bv(ρ) = σv(Dv(ρ)) and

αv(ρ) = sup
y∈Bv(ρ)

‖s0(x)‖v
‖s0(y)‖v

.
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By Claims 3.2 and 3.3 (1), we have ρv = 1 and αv(1) = 1 for every v /∈ P. Let
ε > 0. By continuity of the metrics, for every v ∈ P there exists a positive real
number ρε,v ≤ ρv such that αv(ρε,v) ≤ exp(ε/(nv(K)#P)). For every v /∈ P, we
put ρε,v = 1. We have∑

v∈ΣK

nv(K) lnαv(ρε,v) =
∑
v∈P

nv(K) lnαv(ρε,v) ≤ ε,

and we define

ρ(D,x, ε) = −
∑
v∈ΣK

nv(K) ln ρε,v = −
∑
v∈P

nv(K) ln ρε,v ∈ R.

Let m ≥ 1 be an integer and let s ∈ Γ(XK ,mDK)×. In order to prove (3.1),
we assume that s ∈ Γ(X,mD)× is defined over K without loss of generality. For
every i ∈ {1, . . . , d}, we let zi = si/s0 − xi ∈ OX(U) (recall that si = ϕ∗Ti). By
construction, z = (z1, . . . , zd) is a system of parameters at x; by a slight abuse of
notation, we also consider it as a system of parameters at q(x). Let f = s/sm0 ∈
OX(U). By definition of ordx s, there exists α ∈ Nd with |α| = ordx s such that
∂α
z f(x) 6= 0. Let v ∈ ΣK and let fv ∈ OXCv

(UCv ) be the pull-back of f to UCv . By
Cauchy’s inequality in several variables (see [BGR84, § 5.1.3, Proposition 3] in the
non-Archimedean case), we have

|∂α
z f(x)|v = |∂α

z (σ∗vfv)(qv(x))|v ≤
supz∈Dv(ρε,v) |σ∗vfv(z)|v

ρordx s
ε,v

=
supz∈Bv(ρε,v) |fv(z)|v

ρordx s
ε,v

,

where σv : Dv(ρv)→ UCv (Cv) is the section given by Claim 3.3 (1). Therefore

‖s0(x)‖mv |∂α
z f(x)|v ≤ αv(ρε,v)m

supz∈Bv(ρε,v) ‖s(z)‖v
ρordx s

≤ αv(ρε,v)m
‖s‖v,sup

ρordx s
ε,v

for any v ∈ ΣK . Since ∂α
z f(x) 6= 0, we have

mĥD(x) = −
∑
v∈ΣK

nv(K) ln(‖s0(x)‖mv |∂α
z f(x)|v)

≥ −hmD(s)− ρ(D,x, ε) ordx s−m
∑
v∈ΣK

nv(K) lnαv(ρε,v)

≥ −hmD(s)− ρ(D,x, ε) ordx s−mε

and we are done.
�

4. Concave transform and arithmetic Okounkov bodies

We briefly recall the construction of geometric Okounkov bodies in subsection
4.1, following [LM09], [Mor16, § 7.3] and [Bou14]. We then define the arithmetic
concave transform (§ 4.2) introduced by Boucksom and Chen [BC11]. The only
new material in this section is contained in §§ 4.3 and 4.4, where we generalize the
construction of the concave transform and the arithmetic Okounkov bodies from
[BC11] to arbitrary adelic R-Cartier divisors (without assuming the underlying
Cartier divisor to be big).



16 FRANÇOIS BALLAŸ

4.1. Okounkov bodies of big Cartier divisors. We denote by ≤lex the lexico-
graphic order on Zd.

Definition 4.1. A valuation of maximal rank ν on Rat(XK) is a surjective map

ν : Rat(XK)× → Zd satisfying the following three conditions:

• ν(fg) = ν(f) + ν(g) for every f, g ∈ Rat(XK)×,
• min{ν(f), ν(g)} ≤lex ν(f + g) for every f, g ∈ Rat(XK)× with f + g 6= 0,

• ν(a) = 0Zd for every a ∈ K×.

We denote by V(XK) the set of valuations of maximal rank on Rat(XK)×. For any

ν ∈ V(XK), we let ν(0) =∞, with the convention that α <lex ∞ for every α ∈ Zd.

Let ν ∈ V(XK). We consider the sets

Oν = {f ∈ Rat(XK) | ν(f) ≥lex 0Zd} and mν = {f ∈ Oν |ν(f) >lex 0Zd}.
By the valuative criterion for properness, there exists a unique schematic point
cX(ν) ∈ XK such that

OXK ,cX(ν) ⊆ Oν and mXK ,cX(ν) = OXK ,cX(ν) ∩mν ,

where mXK ,cX(ν) denotes the maximal ideal of OXK ,cX(ν). We call cX(ν) the center

of ν. By [Bou14, Remark 2.25], we have Oν/mν = K. In particular, cX(ν) ∈ XK

is a closed point. Moreover, for every closed point x ∈ XK there exists a valuation
of maximal rank ν ∈ V(XK) with center cX(ν) = x (see [ZS60, Chap. VI, § 16,
Theorem 37, page 106]).

Example 4.2. Let Y• be an admissible flag on XK , that is a sequence

Y• : XK = Y0 ) Y1 ) · · · ) Yd−1 ) Yd = {x}
such that for every i ∈ {0, . . . , d}, Yi ⊆ XK is a subvariety of codimension i, smooth
at x. We define a valuation of maximal rank νY• ∈ V(XK) as follows. For each
i ∈ {1, . . . , d − 1}, we choose a local equation ωi ∈ OYi,x of Yi+1, and for every
f ∈ Rat(XK)× we let

νY•(f) = (ordY1
(f0), ordY2

(f1), . . . , ordYd(fd)),

where the fi ∈ Rat(Yi)
× are defined inductively by f0 = f and

fi+1 = (ω
− ordYi+1

(fi)

i+1 fi)|Yi+1
.

Note that cX(νY•) = x ∈ XK .

Example 4.3. Let x ∈ XK be a smooth closed point and let X̃ → X be the
blow-up of XK at x, with exceptional divisor E. An infinitesimal flag over x ∈ XK

is an admissible flag on X̃

Ỹ• : X̃ = Ỹ0 ) Ỹ1 ) · · · ) Ỹd−1 ) Ỹd

such that E = Ỹ1 and for each i ∈ {2, . . . , d}, Ỹi is an (d − i)-dimensional linear

subspace of E ' Pd−1

K
for every i ∈ {1, . . . , d}. We denote by νỸ• ∈ V(XK) the

valuation of maximal rank on Rat(XK) = Rat(X̃) constructed in Example 4.2. We
have cX(νỸ•) = x.

In the rest of this section, we fix a valuation of maximal rank ν ∈ V(XK). For a
Cartier divisor D ∈ Div(XK) on XK , we define ν(D) = ν(f), where f ∈ Rat(XK)×

is any rational function defining D around cX(ν) ∈ XK . Note that this definition

does not depend on the choice of f since ν(g) = 0 for every g ∈ O×XK ,cX(ν). We

obtain a map Div(XK)→ Zd, that extends to a map

ν : Div(XK)R → Rd
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after tensoring by R. By construction, we have

• ν(λD) = λν(D) for any D ∈ Div(X)R and any λ ∈ R,
• ν(D1) + ν(D2) = ν(D1 +D2) for any D1, D2 ∈ Div(X)R,

Given a divisor D ∈ Div(XK)R and a global section s = (D,φ) ∈ Γ(XK , D), we
write ν(s) = ν(div(s)) = ν(D + (φ)).

Let D ∈ Div(X)R be a big R-Cartier divisor, and let V•(D) :=
⊕

n∈N Γ(X,nD).
Given a graded K-subalgebra W• =

⊕
n∈NWn ⊆ V•(D), we consider the subset

Γν(W•) of Rd defined by

Γν(W•) =

{
ν(s)

n
| n ≥ 1, s ∈Wn ⊗K K \ {0}

}
.

Definition 4.4. The Okounkov body of W• with respect to ν is the closure

∆ν(W•) := Γν(W•)

of Γν(W•) in Rd for the Euclidean topology. When W• = V•(D), ∆ν(D) :=
∆ν(V•(D)) is called the Okounkov body of D with respect to ν.

We define the volume of W• as

vol(W•) = lim sup
n→∞

dimWn

nd/d!
.

Following [BC11, Definition 1.1], we say that W• contains an ample series if

• Wn 6= 0 for every n� 1, and
• there exist an integer ` ≥ 1 and an ample Q-Cartier divisor A ∈ Div(X)Q

such that A ≤ D and H0(X,n`A) ⊆Wn` for every n ≥ 1.

In that case, we have

µRd(∆ν(W•)) = vol(W•)/d! = lim
n→∞

dimWn

n!

by [LM09, Theorem 2.13], where µRd is the Lebesgue measure on Rd. Note that
V•(D) contains an ample series since D is big. In particular, ∆ν(D) ⊂ Rd is a
convex body and vol(D) = d!µRd(∆ν(D)).

4.2. The arithmetic concave transform. Let D = (D, (gv)v∈ΣK ) ∈ Div(X)R be

an adelic R-Cartier divisor on X such that D is big. Let ξ = (0, (ξv)v∈ΣK ) ∈ D̂iv(X)

be such that d̂eg(ξ) = 1 (see Example 2.2). For any n ∈ N \ {0} and t ∈ R, we

denote by V tn(D) ⊆ Γ(X,nD) the K-linear subspace generated by Γ̂(X,nD − tξ).
We let V t• (D) ⊆ V•(D) be the graded K-subalgebra defined by

V t• (D) =
⊕
n∈N

V ntn (D).

Definition 4.5. The concave transform of D with respect to ν is the function
GD,ν : ∆ν(D)→ R ∪ {−∞} given by

GD,ν(α) = sup{t ∈ R | α ∈ ∆ν(V t• (D))}

for every α ∈ ∆ν(D).

By [BC11, § 1.3], GD,ν is an upper semi-continuous concave function, and it is

continuous on the interior of ∆ν(D).

Lemma 4.6. We have

inf
α∈∆ν(D)

GD,ν(α) = sup{t ∈ R | vol(D) = vol(V t• (D))} ∈ R ∪ {−∞}.

In particular, inf∆ν(D)GD,ν does not depend on ν.
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Proof. Let θ(D) be the supremum on the right hand-side. To prove that θ(D) ≥
inf GD,ν , we assume that inf GD,ν > −∞ without loss of generality. For any real

number t < inf GD,ν , it follows from the definitions that ∆ν(V t• (D)) = ∆ν(D).

Moreover, V t• (D) contains an ample series by [BC11, Lemma 1.6 and (1.8) page
1213]. Therefore vol(V t• (D)) = vol(D), and it follows that θ(D) ≥ inf GD,ν . Con-

versely, let t ∈ R be a real number such that vol(V t• (D)) = vol(D) > 0. By [BC11,
Lemma 1.6], V t• (D) contains an ample series and therefore µRd(∆ν(V t• (D))) =
µRd(∆ν(D)). Since ∆ν(V t• (D)) is a closed subset of ∆ν(D), we have ∆ν(V t• (D)) =
∆ν(D) and therefore GD,ν(α) ≥ t for every α ∈ ∆ν(D) by definition of GD,ν . �

We end this paragraph with a fundamental theorem of Boucksom and Chen
relating the concave transform to the arithmetic volume.

Theorem 4.7 (Boucksom–Chen). We have

v̂ol(D) = (d+ 1)!

∫
∆ν(D)

max{0, GD,ν}dµRd .

Moreover, if D is semi-positive then

hD(X) ≤ (d+ 1)!

∫
∆ν(D)

max{t, GD,ν}dµRd ,

for every t ∈ R, with equality if ζabs(D) ≥ t.

Proof. The first part of the theorem follows from [BC11, Theorem 1.11] as in the
proof of [BC11, Theorem 2.8]. In order to prove the second part, we assume that

D is semi-positive. Let ξ = (0, (ξv)v∈ΣK ) ∈ D̂iv(X) be the adelic R-Cartier divisor
introduced at the beginning of § 4.2 and let t ∈ R be a real number. We let
D(t) = D − tξ. By definition, we have GD(t),ν = GD,ν − t. Moreover, D(t) is

semi-positive. By Remark 2.5 (2) and Theorem 2.8, we have

hD(X) = hD(t)(X) + t(d+ 1) degD(X) ≤ v̂ol(D(t)) + t(d+ 1) degD(X),

with equality if ζabs(D) ≥ t (since in that case ζabs(D(t)) = ζabs(D) − t ≥ 0, so

that D(t) is nef and hD(t)(X) = v̂ol(D(t)) by Theorem 2.8). On the other hand,

v̂ol(D(t)) = (d + 1)!
∫

∆ν(D)
max{0, GD,ν − t}dµRd and degD(X) = d!µRd(∆ν(D)).

Therefore

hD(X) ≤ (d+ 1)!

∫
∆ν(D)

(max{0, GD,ν − t}+ t)dµRd

= (d+ 1)!

∫
∆ν(D)

max{t, GD,ν}dµRd ,

with equality if ζabs(D) ≥ t. �

4.3. The generalized arithmetic concave transform. In the previous para-
graph, we defined the arithmetic concave transform for adelic R-Cartier divisors
D = (D, (gv)v∈ΣK ) with D big. Our goal in this subsection is to extend this con-
struction to the case where D is pseudo-effective (Definition 4.12). We first need
to define Okounkov bodies of pseudo-effective divisors.

Definition 4.8. Let D ∈ Div(X)R. If D is pseudo-effective, the Okounkov body
of D with respect to ν is

∆ν(D) =
⋂

A ample

∆ν(D +A),
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where the intersection is over all ample R-Cartier divisors A on X. If D is not
pseudo-effective, we put ∆ν(D) = ∅.

When D is big, the Okounkov body ∆ν(D) of Definition 4.8 coincides with the
one defined in § 4.1 (see [Bou14, Proposition 4.4]).

Lemma 4.9. For any A ∈ D̂iv(X)R generated by strictly small R-sections, we have
0Rd ∈ ∆ν(V 0

• (A)). In particular, GA,ν(0Rd) ≥ 0.

Proof. Let us first assume that A ∈ D̂iv(X). By [BGMPS16, Lemma 3.17], there

exists an integer n ≥ 1 and a small global section s ∈ Γ̂(X,nA)× ⊆ V 0
n (A) such

that cX(ν) /∈ Supp(div(s))K . Therefore, if f ∈ Rat(XK)× defines div(s)K around

cX(ν), we have f = O×XK ,cX(ν). Hence 0Rd = ν(f)/n = ν(s)/n ∈ ∆ν(V 0
• (A)).

We now consider the general case. As shown in [Mor12, Proof of Proposition
6.5.3], there exist adelic R-Cartier divisors A1, . . . , Ar satisfying the following con-
ditions:

• for every i ∈ {1, . . . , r}, we have 1 ∈ Γ̂(X,Ai)
×;

• for every ε > 0, there exist positive real numbers δ1, . . . , δr ∈ (0, ε) such

that A−
∑r
i=1 δiAi ∈ D̂iv(X)Q is generated by strictly small R-sections.

Let ε > 0 and δ1, . . . , δr ∈ (0, ε) be as above. By construction, we have

ν(V 0
n (A−

r∑
i=1

δiAi)) + n

r∑
i=1

δiν(Ai) ⊆ ν(V 0
n (A))

for any integer n ≥ 1, and therefore

∆0
ν(A−

r∑
i=1

δiAi) +

r∑
i=1

δiν(Ai) ⊆ ∆0
ν(A).

By the above we have 0Rd ∈ ∆0
ν(A−

∑r
i=1 δiAi), thus

∑r
i=1 δiν(Ai) ⊆ ∆0

ν(A). By

letting ε tend to zero, it follows that 0Rd ∈ ∆0
ν(A). �

Lemma 4.10. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X), and assume that D is big. For
every α ∈ ∆ν(D), we have

GD,ν(α) = inf
A ample

GD+A(α),

where the infimum is over all ample adelic R-Cartier divisors A on X.

Proof. We let G̃D,ν = infA ample GD+A be the function on the right hand-side. Let

A be an ample adelic R-Cartier divisor. For any t ∈ R and for any integer n ≥ 1,
ν(V ntn (D)) + ν(V 0

n (A)) is a subset of{
ν(div(s) + div(s′)) | s ∈ V ntn (D) \ {0}, s′ ∈ V 0

n (A) \ {0}
}
⊆ ν(V ntn (D +A)).

This implies that ∆ν(V t• (D)) + ∆ν(V 0
• (A)) ⊆ ∆ν(V t• (D +A)), and therefore

∆ν(V t• (D)) ⊆ ∆ν(V t• (D +A))

by Lemma 4.9. It follows that GD,ν ≤ G̃D,ν . To prove the converse inequality,

we argue by contradiction and we assume that GD,ν < G̃D,ν . Using that G̃D,ν is

concave, that GD,ν is upper semi-continuous on ∆ν(D), and that GD,ν is continuous

on the interior of int(∆ν(D)), it is easy to see that there exists α ∈ int(∆ν(D))

such that GD,ν(α) < G̃D,ν(α). Let ξ ∈ D̂iv(X) be the adelic Cartier divisor

defined in § 4.2. Then GD+εξ,ν = GD,ν + ε and G̃D+εξ,ν = G̃D,ν + ε for any

ε ∈ R by definition. Let ε be a real number such that GD+εξ,ν(α) > 0. Since

α ∈ int(∆ν(D)) and 0 < GD+εξ,ν(α) < G̃D+εξ,ν(α), there exist a real number
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λ > 0 and an open subset U ⊆ int(∆ν(D)) with positive Lebesgue measure such

that 0 < GD+εξ,ν(β) < G̃D+εξ,ν(β) − λ for every β ∈ U (note that GD+εξ,ν and

G̃D+εξ,ν are concave, hence continuous on int(∆ν(D)). Theorem 4.7 implies that

there exists a real number λ′ > 0 such that

v̂ol(D + εξ) + λ′ < v̂ol(D + εξ +A)

for any ample adelic R-Cartier divisor A on X. This contradicts the continuity

property (2.1) of v̂ol, and finishes the proof. �

Remark 4.11. It follows from the proof that Lemma 4.10 remains valid when
the infimum is taken over all adelic R-Cartier divisors generated by strictly small
R-sections. We will not use this fact in this text.

Lemma 4.10 allows us to extend the definition of the arithmetic concave trans-
form as follows.

Definition 4.12. Let D = (D, (gv)v∈ΣK ) be an adelic R-Cartier divisor on X such
that D is pseudo-effective. The arithmetic concave transform of D with respect to
ν is the concave function GD,ν : ∆ν(D)→ R ∪ {−∞} defined by

GD,ν(α) = inf
A ample

GD+A,ν(α),

for every α ∈ ∆ν(D), where the infimum is over all ample adelic R-Cartier divisors
A on X.

We end this paragraph with an alternative description of the arithmetic concave
transform.

Lemma 4.13. Let D = (D, (gv)v∈ΣK ) be an adelic R-Cartier divisor on X such

that D is pseudo-effective, and let A0 ∈ D̂iv(X)R be generated by strictly small
R-sections. For every α ∈ ∆ν(D), we have

GD,ν(α) = lim
m→∞

GD+ 1
mA0,ν

(α).

Moreover, for every α ∈ ∆ν(D) we have

GD,ν(α) = inf
A ample

D+A∈D̂iv(X)Q

GD+A,ν(α),

where the infimum is over all ample adelic R-Cartier divisors on X such that D +

A ∈ D̂iv(X)Q is an adelic Q-Cartier divisor.

Proof. Arguing as in the proof of Lemma 4.10, we have

∆t
ν(D) ⊆ ∆t

ν(D +
1

m+ 1
A0) ⊆ ∆t

ν(D +
1

m
A0)

for every t ∈ R and m ∈ N \ {0}. It follows that

GD,ν(α) ≤ GD+ 1
m+1A0,ν

(α) ≤ GD+ 1
mA0,ν

(α)

for every α ∈ ∆ν(D). Let A ∈ D̂iv(X)R be ample. Then for m ≥ 1 sufficiently
large, A− 1

mA0 is generated by strictly small R-sections. As above, it follows that

GD+ 1
mA0,ν

(α) ≤ GD+A,ν(α). Taking the infimum on A, we obtain that

GD,ν(α) ≤ lim
m→∞

GD+ 1
mA0,ν

(α) ≤ GD,ν(α) = inf
A ample

GD+A,ν(α).

This proves the first part of the lemma. The second one can be proved with the

same arguments, after observing that for every ample A ∈ D̂iv(X)R there exists

an ample A
′ ∈ D̂iv(X)R such that D + A

′ ∈ D̂iv(X)Q and A − A′ is generated by
strictly small R-sections. �
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4.4. Arithmetic Okounkov body.

Definition 4.14. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R. If D is pseudo-effective, we
define the arithmetic Okounkov body of D as

∆̂ν(D) = {(α, t) ∈ ∆ν(D)× R+ | GD,ν(α) ≥ t}.

If D is not pseudo-effective, we put ∆̂ν(D) = ∅.

It follows from the definitions that for any D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R, we
have

∆̂ν(D) =
⋂

A ample

∆̂ν(D +A),

where the intersection is over all ample adelic R-Cartier divisors A on X. We
also have the following useful reformulation of Lemma 4.13 in terms of arithmetic
Okounkov bodies.

Lemma 4.15. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R, and let A0 ∈ D̂iv(X)R be
generated by strictly small R-sections. We have

∆̂ν(D) =
⋂

m∈N\{0}

∆̂ν(D +
1

m
A0) =

⋂
A ample

D+A∈D̂iv(X)Q

∆̂ν(D +A),

where the last intersection is over all ample adelic R-Cartier divisors A on X such

that D +A ∈ D̂iv(X)Q.

Proof. It is well-known and not hard to see that the geometric Okounkov body
satisfies

∆ν(D) =
⋂

m∈N\{0}

∆ν(D +
1

m
A0) =

⋂
A ample

D+A∈Div(X)Q

∆ν(D +A).

Therefore the result follows directly from the definitions and Lemma 4.13. �

In the case where D is big, Lemma 4.10 implies that ∆̂ν(D) coincides with the
arithmetic Okounkov body introduced in [BC11, Definition 2.7]. In particular, we
have the following.

Lemma 4.16. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R. If D is big, then

∆̂ν(D) = {(α, t) ∈ ∆ν(D)× R+ | α ∈ ∆ν(V t• (D))}

and

(d+ 1)!µRd+1(∆̂ν(D)) = v̂ol(D),

where µRd+1 is the Lebesgue measure on Rd+1.

Proof. The first equality follows from [BC11, Remark 1.10] (see [KMR21, (3.20.1)]
for details). The second one is the first part of Theorem 4.7. �

We end this section with a characterization of pseudo-effective adelic R-Cartier
divisors.

Lemma 4.17. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R. Then D is pseudo-effective if

and only if ∆̂ν(D) 6= ∅.
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Proof. Let A0 ∈ D̂iv(X)R be an ample adelic R-Cartier divisor on X. Assume
that D is pseudo-effective. Then D + 1

mA0 is big for any integer m ≥ 1. It

follows that ∆̂ν(D) is the intersection of a decreasing nested sequence of convex
bodies, and therefore it is non-empty by Cantor’s intersection theorem. Conversely,

assume that ∆̂ν(D) 6= ∅. Then D is pseudo-effective and ∆̂ν(D + 1
mA0) 6= ∅ for

any integer m ≥ 1. By definition, there exists αm ∈ ∆ν(D + 1
mA0) such that

GD+A0/m,ν
(αm) ≥ 0. By [Bal21a, Remark 5.7 and Lemma 6.3], D + 1

mA0 is

pseudo-effective for any m ≥ 1. Therefore D is pseudo-effective. �

5. Positivity via arithmetic Okounkov bodies

We prove Theorem 1.1 in § 5.1. In § 5.2, we prove Corollary 1.2 and a refinement
of Theorem 1.3 characterizing arithmetic nefness (Corollaries 5.3 and 5.5). We
then give several characterizations of arithmetic ampleness in terms of arithmetic
Okounkov bodies in § 5.3, where we prove variants of Theorem 1.4 (see Corollaries
5.7 and 5.8).

5.1. Height of points and arithmetic concave transform. We shall establish
Theorem 1.1 as a consequence of Proposition 3.1.

Theorem 5.1. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R and let ν ∈ V(XK) be a valu-
ation of maximal rank on Rat(XK) centered at a point x ∈ XK . If D is nef, then
0Rd ∈ ∆ν(D) and

ĥD(x) ≥ GD,ν(0Rd).

Proof. Since D is nef, we have 0Rd ∈ ∆ν(D) by [Bou14, (20) page 1059-30]. We

shall divide the proof of the inequality ĥD(x) ≥ t0 := GD,ν(0Rd) into three steps.

Step 1. We suppose that x ∈ XK is a regular point and that D ∈ Div(X)Q is

an ample Q-Cartier divisor. We have 0Rd ∈ ∆ν(V t0• (D)) by Lemma 4.16, and in
particular V t0• (D) 6= {0}. Let us prove the following claim.

Claim 5.2. For any σ > 0, there exist an integer m ≥ 1 and a non-zero global
section s ∈ Γ(X,mD)× such that hmD(s) < −mt0 and ordx s < mσ.

Proof. Let m ≥ 1 be an integer and let s̃ ∈ V mt0m (D)⊗KK\{0}. By definition, there

exist a family s1, . . . , srm ∈ Γ(X,mD)× and λ1, . . . , λrm ∈ K
×

such that hmD(si) <
−mt0 for every i ∈ {1, . . . , rm} and s̃ =

∑rm
i=1 λisi. Assume by contradiction that

the conclusion of the claim does not hold and let i ∈ {1, . . . , rm}. Then ordx si ≥
mσ. Let z1, . . . , zd be a system of parameters at x and let βx = min1≤j≤d ν(zj) ∈
Zd. Since x = cX(ν), we have βx >lex 0Zd . By definition of ordx(si), div(si) is
locally defined by a function f ∈ mmσXK ,xOXK ,x around x, and therefore ν(si) =

ν(f) ≥lex mσβx. Hence

ν(s̃) ≥lex min
1≤i≤rm

ν(si) ≥lex mσβx.

It follows that

Γν(V t0• (D)) ⊆ {α ∈ Qd | α ≥lex σβx},
and thus α ≥lex σβx >lex 0Rd for every α ∈ ∆ν(V t0• (D)). This is a contradiction
since 0Rd ∈ ∆ν(V t0• (D)). �

Let ε and σ be positive real numbers. By Claim 5.2, there exist m ∈ N\{0} and
s ∈ Γ(X,mD)× with hmD(s) < −mt0 and ordx(s) < mσ. By Proposition 3.1, we
have

ĥD(x) + ε ≥ − 1

m
(hmD(s) + ρ(D,x, ε) ordx s) > t0 − σ|ρ(D,x, ε)|,
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where ρ(D,x, ε) ∈ R depends only on D, x and ε. By letting σ tend to zero, we

obtain ĥD(x) ≥ t0 − ε, and therefore ĥD(x) ≥ t0. That proves the theorem in the
case where x is regular and D is an ample Q-Cartier divisor.

Step 2. We continue to suppose that D ∈ Div(X) is an ample Q-Cartier divisor,
but we allow x ∈ XK to be a singular point. By de Jong’s alteration Theorem [dJ96,
Theorem 4.1], there exist a finite extension K ′ of K and a smooth geometrically
integral projective variety X ′ over K ′, together with a surjective generically finite

morphism µ : X ′ → XK′ . We denote by D
′ ∈ D̂iv(X ′)R the pullback of D to X ′,

and we let ν′ ∈ V(X ′
K

) be a valuation of maximal rank extending ν (such a valuation

exists by [ZS60, Chap. VI, § 6, Theorem 11, page 26]). The center x′ = cX′(ν
′) of ν′

satisfies µ(x′) = x, and in particular ĥD′(x
′) = ĥD(x). We have 0Rd ∈ ∆ν(V t0• (D))

by Lemma 4.16 (recall that t0 = GD,ν(0Rd)). It follows that for any positive integer

n, there exist mn ∈ N \ {0} and sn ∈ V mnt0mn (D) \ {0} such that αn := ν(sn)/mn

satisfies |αn| < 1/n. By construction, µ∗sn ∈ V mnt0mn (D
′
) and ν′(µ∗sn) = ν(sn) for

every n > 0. Therefore αn ∈ ∆ν′(V
t0
• (D

′
)). Letting n tend to infinity, it follows

that 0Rd ∈ ∆ν′(V
t0
• (D

′
)) and thus GD′,ν′(0Rd) ≥ t0. By Step 1, we have

ĥD(x) = ĥD′(x
′) ≥ GD′,ν′(0Rd) ≥ t0.

Step 3. Finally, we consider the general case. There exist ample adelic R-
Cartier divisors A1, . . . , An such that for any real number δ > 0, there exists t =
(t1, . . . , td) ∈ Rn+ such that |t| < δ and

Dt = D +

n∑
i=1

tiAi ∈ D̂iv(X)Q.

Let δ > 0 be a real number and let t = (t1, . . . , tn) ∈ Rn+ be a n-tuple such that

|t| < δ and Dt ∈ D̂iv(X)Q. Since D is nef, the underlying divisor Dt is ample. By
Step 2, we have

hDt
(x) ≥ GDt,ν

(0Rd) ≥ GD,ν(0Rd),

where the second inequality follows from the definition of GD,ν (Definition 4.12).

On the other hand, hAi(x) > 0 for every i ∈ {1, . . . , n}, hence

ĥD(x) + δ

n∑
i=1

ĥAi(x) ≥ ĥDt
(x) ≥ GD,ν(0Rd).

Letting δ tend to zero, we conclude that ĥD(x) ≥ GD,ν(0Rd). �

5.2. Characterization of arithmetic nefness. As a direct consequence of The-
orem 5.1, we have the following refinement of Theorem 1.3 (see Remark 5.4 below).

Corollary 5.3. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R be semi-positive and let V0 ⊆
V(XK) be a subset such that for every closed point x ∈ XK , there exists ν ∈ V0

with center cX(ν) = x. The following conditions are equivalent:

(1) D is nef;
(2) for every ν ∈ V0, we have GD,ν(α) ≥ 0 for all α ∈ ∆ν(D);

(3) for every ν ∈ V0, we have GD,ν(0Rd) ≥ 0;

(4) for every closed point x ∈ XK , there exists a valuation of maximal rank
ν ∈ V0 centered at x such that GD,ν(α) ≥ 0 for all α ∈ ∆ν(D);

(5) for every closed point x ∈ XK , there exists a valuation of maximal rank
ν ∈ V0 centered at x such that GD,ν(0Rd) ≥ 0.

Moreover, if D is big then the above conditions are equivalent to the following:
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(6) there exists a valuation of maximal rank ν ∈ V(XK) such that GD,ν(α) ≥ 0

for all α ∈ ∆ν(D).

Proof. We first prove that (1)⇒ (2). Assume that D is nef and let A be an ample

adelic R-Cartier divisor such that D+A ∈ D̂iv(X)Q. Since D is nef, D+A is ample.

By Theorem 2.10 and [CM19, Theorem 7.4.1], we have V 0
• (D + A) = V•(D + A).

Therefore GD+A,ν ≥ 0 for every ν ∈ V0 by Lemma 4.6, and (2) holds by Lemma

4.13. The implications (2) ⇒ (4) =⇒ (5) and (2) ⇒ (3) =⇒ (5) are trivial. If

(5) holds, then ĥD(x) ≥ 0 for every closed point x ∈ XK , and therefore D is nef.
Finally, we note that when D is big then (2)⇔ (6) by Lemma 4.6. �

Remark 5.4. Theorem 1.3 in the introduction is nothing but a translation in
terms of arithmetic Okounkov bodies of the equivalences (1)⇔ (3)⇔ (5) given by
Corollary 5.3 in the case V0 = V(XK).

We end this subsection with a slight generalization of Corollary 1.2, that gives

new descriptions of the absolute minimum ζabs(D) = infx∈X(K) ĥD(x).

Corollary 5.5. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R be semi-positive and let V0 ⊆
V(XK) be a subset such that for every closed point x ∈ XK , there exists ν ∈ V0

with center cX(ν) = x. Then

ζabs(D) = inf
ν∈V0

GD,ν(0Rd).

Moreover, if D is big then ζabs(D) = infα∈∆ν(D)GD,ν(α) for any ν ∈ V(XK).

Proof. Let ξ = (0, (ξv)v∈ΣK ) be the adelic Cartier divisor defined in § 4.2. For
t ∈ R, we let D(t) = D − tξ. Note that since D is semi-positive, so is D(t). By
definition, D(t) is nef if and only if ζabs(D) − t = ζabs(D(t)) ≥ 0. Moreover, by
construction we have GD(t),ν(α) = GD,ν(α)− t for any ν ∈ V(XK) and α ∈ ∆ν(D).

By Corollary 5.3, we have

ζabs(D) ≥ t⇐⇒ inf
ν∈V0

GD,ν(0Rd) ≥ t,

and if moreover D is big then

ζabs(D) ≥ t⇐⇒ inf
α∈∆ν(D)

GD,ν(α) ≥ t

for any ν ∈ V(XK). The corollary follows. �

5.3. Characterizations of arithmetic ampleness. Let us begin with a direct
consequence of Corollary 5.5.

Corollary 5.6. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R be a semi-positive adelic R-
Cartier divisor such that D is ample, and let ν ∈ V(XK) be a valuation of maximal

rank. Then D is ample if and only if infα∈∆ν(D)GD,ν(α) > 0.

Proof. By Corollary 5.5, the statement is a reformulation of the arithmetic Nakai–
Moishezon criterion (Theorem 2.10). �

Our next goal is to prove variants of Corollary 5.6 without assuming that D is
ample. To do so, we shall combine the results of the previous subsection with char-
acterizations of geometric ampleness in terms of Okounkov bodies due to Park and
Shin [PS21] (which extend the results of Küronya and Lozovanu [KL17a, KL17b]
to the case of arbitrary characteristic). For this purpose, we focus on valuations
arising from admissible and infinitesimal flags constructed in Examples 4.2 and 4.3.
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5.3.1. Admissible flags. Recall that an admissible flag Y• on XK is a sequence

Y• : XK = Y0 ) Y1 ) · · · ) Yd−1 ) Yd = {x}

such that for every i ∈ {0, . . . , d}, Yi ⊆ XK is a subvariety of codimension i, smooth
at x. We call x ∈ XK the center of Y•. Given an admissible flag Y• on XK , we
let νY• ∈ V(XK) be the valuation of maximal rank constructed in Example 4.2.

For any D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R, we denote by ∆̂Y•(D) = ∆̂νY•
(D) the

arithmetic Okounkov body defined with respect to νY• . For any real number λ > 0,
we let ∆λ ⊆ Rd+ be the standard simplex of size λ:

∆λ = {(α1, . . . , αd) ∈ Rd+ |
d∑
i=1

αi ≤ λ}.

We have the following arithmetic analogue of [KL17b, Corollary 3.2].

Corollary 5.7. Assume that X is smooth. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R be a
semi-positive adelic R-Cartier divisor. Then the following assertions are equivalent:

(1) D is ample;
(2) there exists a real number ξ > 0 with the following property: for every

admissible flag Y• on XK , there exists λ > 0 such that ∆λ×{ξ} ⊆ ∆̂Y•(D);
(3) there exists a real number ξ > 0 with the following property: for every closed

point x ∈ XK , there exists an admissible flag Y• centered at x and a real

number λ > 0 such that ∆λ × {ξ} ⊆ ∆̂Y•(D).

Proof. Assume that D is ample and let Y• be an admissible flag on X. By [PS21,
Theorem 3.7], there exists λ > 0 such that ∆λ ⊆ ∆Y•(D) := ∆νY•

(D). By Corollary

5.6, ξ := infα∈∆Y• (D)GD,νY•
(α) > 0. Then ∆λ × {ξ} ⊆ ∆̂Y•(D) by definition of

∆̂Y•(D). This shows that (1)⇒ (2). The implication (2)⇒ (3) is trivial, so let us
prove (3)⇒ (1). Assuming (3), we first observe that D is ample by [PS21, Theorem
1.1], and moreover ζabs(D) ≥ ξ > 0 by Theorem 5.1. Therefore D is ample by the
arithmetic Nakai–Moishezon theorem (Theorem 2.10). �

5.3.2. Infinitesimal flags. Let x ∈ XK be a smooth closed point and let X̃ → XK

be the blow-up of XK at x, with exceptional divisor E. Recall that an infinitesimal

flag over x is an admissible flag on X̃

Ỹ• : X̃ = Ỹ0 ) Ỹ1 ) · · · ) Ỹd−1 ) Ỹd

such that Ỹi is an (d − i)-dimensional linear subspace of E = Ỹ1 ' Pd−1

K
for every

i ∈ {1, . . . , d}. Given an infinitesimal flag over x ∈ XK , we let νỸ• ∈ V(XK)

be the valuation of maximal rank constructed in Example 4.3. For any D =

(D, (gv)v∈ΣK ) ∈ D̂iv(X)R, we denote by ∆̂Ỹ•
(D) = ∆̂νỸ•

(D) be the arithmetic

Okounkov body defined with respect to νỸ• . Recall that for λ > 0, ∆−1
λ ⊆ Rd

denotes the inverted standard simplex of size λ:

∆−1
λ = {(α1, . . . , αd) ∈ Rd+ | α1 ≤ λ, α2 + · · ·+ αd ≤ α1}.

The following corollary is an arithmetic analogue of [KL17a, Theorem B].

Corollary 5.8. Assume that X is smooth and let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R
be a semi-positive adelic R-Cartier divisor. The following assertions are equivalent:

(1) D is ample;

(2) there exists a real number λ > 0 such that ∆−1
λ × {λ} ⊆ ∆̂Ỹ•

(D) for every

infinitesimal flag Ỹ• on XK ;
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(3) there exists a real number λ > 0 such that for every closed point x ∈ XK ,

there exists an infinitesimal flag Ỹ• over x with ∆−1
λ × {λ} ⊆ ∆̂Ỹ•

(D).

(4) there exists a real number ξ > 0 with the following property: for every

infinitesimal flag Ỹ• on XK , there exists a real number λ > 0 such that

∆−1
λ × {ξ} ⊆ ∆̂Ỹ•

(D);

(5) there exists a real number ξ > 0 with the following property: for every closed

point x ∈ XK , there exists an infinitesimal flag Ỹ• over x and a real number

λ > 0 such that ∆−1
λ × {ξ} ⊆ ∆̂Ỹ•

(D).

Proof. We first prove (1) ⇒ (2). Assume that D is ample. By Lemma 4.6 and
Corollary 5.6, there exists a real number λ′ > 0 such that inf GD,ν ≥ λ′ for any

valuation of maximal rank ν ∈ V(XK). For any closed point x ∈ XK , we denote
by ε(D,x) the Seshadri constant of D at x (see [PS21, § 2.3]). Since D is ample,
we have

ε(D) := inf
x∈XK

ε(D,x) > 0

by Seshadri’s criterion for ampleness [Laz04, Theorem 1.4.13]. Let λ be a positive

real number with λ < min{ε(D), λ′}, and let Ỹ• be an infinitesimal flag on XK . By

[PS21, Theorem 1.2 (2)], we have ∆−1
λ ⊆ ∆Ỹ•

(D) := ∆νỸ•
(D). Since GD,νỸ•

(α) ≥ λ

for every α ∈ ∆Ỹ•
(D), we have ∆−1

λ × {λ} ⊆ ∆̂Ỹ•
(D). The implications (2) ⇒

(3) ⇒ (5) and (2) ⇒ (4) ⇒ (5) are trivial, and the implication (5) ⇒ (1) follows
from [PS21, Theorem 1.1] and Theorem 5.1 as in the proof of Corollary 5.8. �

We end this section by comparing our results with the characterizations of arith-
metic positivity of toric metrized divisors established by Burgos Gil, Moriwaki,
Philippon and Sombra in [BGMPS16].

Remark 5.9. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R, and assume that the pair (X,D)
is toric in the sense of [BGMPS16, Definition 4.12]. Let θD : ∆D → R be the roof
function introduced in [BGMPS16, Definition 4.17]. By [BC11, § 4.4], we can choose
an admissible flag Y• on X such that ∆Y•(D) = ∆D and GD,Y• = θD. Corollary
5.6 gives the equivalence

D is ample ⇐⇒ D is ample, D is semi-positive and inf
α∈∆D

θD(α) > 0,

which permits to recover [BGMPS16, Theorem 2 (1)] thanks to the characteriza-
tions of geometric ampleness and semi-positivity provided by [BGMPS16, Propo-
sitions 4.7 and 4.19]. Similarly, Corollary 5.3 can be considered as a generalization
of [BGMPS16, Theorem 2 (2)]. In order to fully generalize [BGMPS16, Theorem
2] to the non-toric case, it would remain to characterize semi-positivity of adelic R-
Cartier divisors through convex analysis, in analogy with [BGMPS16, Proposition
4.19].

6. Applications

The goal of this section is to prove Theorems 1.5 and 1.6. We shall deduce both
of these statements from Corollary 5.3 and from Boucksom and Chen’s Theorem
4.7 relating arithmetic volumes and heights to the arithmetic concave transform.

6.1. A converse to the arithmetic Hilbert-Samuel theorem. The following
statement is equivalent to Theorem 1.5 in the introduction (see Remark 6.2 below).

Corollary 6.1. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R be semi-positive, and let
ν ∈ V(XK) be a be a valuation of maximal rank. If D is big, then the follow-
ing conditions are equivalent:
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(1) D is nef;

(2) v̂ol(D) = hD(X);

Proof. We have (1)⇒ (2) by Theorem 2.8. If v̂ol(D) = hD(X), then∫
∆ν(D)

max{0, GD,ν}dµRd =

∫
∆ν(D)

max{t, GD,ν}dµRd

for any real number t < 0 by Theorem 4.7. Therefore µRd({α ∈ ∆ν(D) | GD,ν(α) <

0}) = 0. By upper semi-continuity of GD,ν , we infer that GD,ν(α) ≥ 0 for any

α ∈ ∆ν(D). Therefore D is nef by Corollary 5.3. �

Remark 6.2. Corollary 6.1 is equivalent to Theorem 1.5. Indeed, for any D =

(D, (gv)v∈ΣK ) ∈ D̂iv(X)R such that D is big and for any N ∈ D̂iv(X)R, we have

v̂ol(D) = lim
n→∞

ĥ0(X,nD +N)

nd+1/(d+ 1)!

by [CM19, Corollary 6.4.10].

Remark 6.3. The assumption that D is big cannot be removed in Corollary 6.1.
To see this, assume that K is a number field and consider the adelic Cartier divisor
D = (0, (ξv)v∈ΣK ) given by ξv = −2 if v is archimedean, and ξv = 0 otherwise.

Then D is semi-positive, and we have v̂ol(D) = hD(X) = 0. However, ĥD(x) = −1

for every closed point x ∈ XK , and therefore D is not nef.

6.2. Generic nets of small points and subvarieties. We now turn to the proof
of Theorem 1.6 (see Theorem 6.6 below). Let us first recall the definition of generic
nets of subvarieties.

Definition 6.4. We say that a net (Ym)m∈(I,�) of subvarieties of XK is generic if
for every Zariski-closed subset H  X, there exists mH ∈ I such that Ym * H for
every m � mH .

Given an adelic R-Cartier divisor D ∈ D̂iv(X)R on X, the essential minimum of
D is defined as

ζess(D) = sup
Z XK

inf
x∈XK\Z

ĥD(x),

where the supremum is over all the proper Zariski-closed subsets Z of XK . We
have the following variant of Zhang’s Theorem on minima [Zha95a, Theorem 5.2].

Theorem 6.5. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R. If D is big and D is semi-
positive, then

ζess(D) ≥ ĥD(X) ≥ ζabs(D).

Proof. For the first inequality, see [Bal21a, Theorem 1.5]. The second one is an
immediate consequence of Corollary 2.9. �

The following theorem gives criteria for equalities to hold in Theorem 6.5. By
Corollary 2.9, it implies Theorem 1.6.

Theorem 6.6. Let D = (D, (gv)v∈ΣK ) ∈ D̂iv(X)R be semi-positive, with D big.
The following conditions are equivalent:

(1) ζabs(D) = ĥD(X);

(2) ζess(D) = ĥD(X);
(3) there exists a generic net of points (pm)m in XK such that

lim
m
ĥD(pm) = ĥD(X);
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(4) there exists a generic net of subvarieties (Ym)m in XK such that

lim
m
ĥD(Ym) = ζabs(D).

Proof. Let ν ∈ V(XK) be a valuation of maximal rank centered at a regular point
of XK . By Corollary 6.1 and [Bal21a, Proposition 7.1], we have

(6.1) ζabs(D) = inf
α∈∆ν(D)

GD,ν(α) and ζess(D) = max
α∈∆ν(D)

GD,ν(α).

By Boucksom–Chen’s Theorem 4.7, we have

ĥD(X) =
1

µRd(∆ν(D))

∫
∆ν(D)

max{t, GD,ν}dµRd

for any real number t ≤ ζabs(D). In view of (6.1), it follows that

ζess(D) = ĥD(X)⇔ GD,ν is constant⇔ ζabs(D) = ĥD(X),

that is, (1)⇔ (2).
The equivalence (2)⇔ (3) is [BGPRLS19, Proposition 2.8]. If (3) holds, then by

the above ζabs(D) = ĥD(X), and therefore (4) holds (for the net (Ym)m = (pm)m).
All that remains is to prove the implication (4)⇒ (1). Assume that there exists a
generic net of subvarieties (Ym)m∈(I,�) in XK such that

lim
m
ĥD(Ym) = ζabs(D),

and let ε > 0 be a real number. By [Bal21a, Theorem 1.2], there exist an integer
n ≥ 1 and a non-zero global section s ∈ Γ(X,nD)× such that

hnD(s) =
∑
v∈ΣK

[Kv : K0,v]

[K : K0]
ln ‖s‖v,sup ≤ −n(ζess(D)− ε) ≤ −n(ĥD(X)− ε).

Since the net (Ym)m∈(I,�) is generic, there exists m0 ∈ I such that div(s) intersects
Ym0 properly, degD(Ym0) > 0, and

(6.2) ζabs(D) + ε ≥ ĥD(Ym0
).

Let r = dimYm0 . Then we have

(6.3) (r + 1)ĥD(Ym0)− rĥD(div(s) · Ym0)

=
1

degD(Ym0)
(hD(Ym0)− 1

n
hD(div(s) · Ym0)) ≥ − 1

n
hnD(s) ≥ ĥD(X)− ε,

where the penultimate inequality follows from the Bézout formula [BGMPS16,

(3.13) page 225]. On the other hand, we have ĥD(div(s) · Ym0) ≥ ζabs(D) by
Lemma 2.9. Combining (6.2) and (6.3), we have

ζabs(D) + (d+ 1)ε ≥ (r + 1)(ζabs(D) + ε)− rζabs(D) ≥ ĥD(X)− ε,

and we conclude that (1) holds by letting ε tend to zero. �
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[Bal21b] François Ballaÿ. Nakai–Moishezon criterion for adelic R-cartier divisors. Preprint,
2021.
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