NAKAI-MOISHEZON CRITERION FOR ADELIC R-CARTIER DIVISORS

FRANCOIS BALLAŸ

ABSTRACT. We prove a Nakai-Moishezon criterion for adelic R-Cartier divisors, which is an arithmetic analogue of a theorem of Campana and Peternell. Our main result answers a question of Burgos Gil, Philippon, Moriwaki and Sombra. We deduce it from the case of adelic Cartier divisors (due to Zhang) by continuity arguments and reductions involving a generalization of Zhang's theorem on successive minima.

1. INTRODUCTION

In algebraic geometry, the Nakai-Moishezon criterion asserts that a Cartier divisor $D \in Div(X)$ on a projective variety X over an algebraically closed field is ample if and only if $D^{\dim Y} \cdot Y > 0$ for every subvariety $Y \subseteq X$. By a theorem of Campana and Peternell [\[CP90\]](#page-14-0), this statement remains valid when $D \in Div(X)_\mathbb{R} = Div(X) \otimes_{\mathbb{Z}} \mathbb{R}$ is a R-Cartier divisor. In [\[Zha95a\]](#page-14-1), Zhang started the study of arithmetic ampleness in the context of Arakelov geometry, and proved an arithmetic Nakai–Moishezon criterion for adelic metrized line bundles ([\[Zha95a,](#page-14-1) Theorem 4.2]). Our purpose is to extend this result to adelic R-Cartier divisors (in the sense of Moriwaki [\[Mor16\]](#page-14-2)), thus proving an arithmetic analogue of Campana and Peternell's theorem.

Let X be a normal and geometrically integral projective scheme over a number field K. An adelic R-Cartier divisor $\overline{D} = (D,(g_v)_v)$ on X is a pair consisting of a R-Cartier divisor $D \in Div(X)_{\mathbb{R}}$ and a suitable collection of Green functions $(g_v)_v$ on the analytifications X_{ν}^{an} of X, where v runs over the set of places of K (see Definition [3.1\)](#page-3-0). The set $\widehat{\mathrm{Div}}(X)_{\mathbb{R}}$ of adelic R-Cartier divisors is a R-vector space; it contains the set of adelic Cartier divisors $\widehat{\mathrm{Div}}(X)$, defined by

 $\widehat{\mathrm{Div}}(X) = \{(D,(q_v)_v) \in \widehat{\mathrm{Div}}(X)_\mathbb{R} \mid D \in \mathrm{Div}(X)\} \subseteq \widehat{\mathrm{Div}}(X)_\mathbb{R}.$

To any adelic Cartier divisor $\overline{D} \in \widehat{\text{Div}}(X)$ we can associate an adelic metrized line bundle $(\mathcal{O}_X(D), (\|.\|_v^D)_v)$ in the sense of Zhang [\[Zha95b\]](#page-14-3), and a global section $s \in H^0(X, D)$ of $\mathcal{O}_X(D)$ is called strictly small if $\sup_{x \in X_v^{\text{an}}} ||s||_v^D(x) \leq 1$ for every place v, with strict inequality at archimedean places. We say that an adelic \mathbb{R} -Cartier divisor \overline{D} is ample if it is semi-positive (see Definition [3.4\)](#page-4-0) and if it can be written as a finite sum

$$
\overline{D} = \sum_{i=1}^{\ell} \lambda_i \overline{A}_i
$$

where for each $i \in \{1, ..., \ell\}, \lambda_i \in \mathbb{R}_{\geq 0}$ and $\overline{A}_i = (A_i, (g_{i,v})_v) \in \widehat{\text{Div}}(X)$ is an adelic Cartier divisor such that $A_i \in Div(X)$ is ample and $H^0(X, mA_i)$ has a K-basis consisting of strictly small sections for every $m \gg 1$. This definition of ampleness for adelic R-Cartier divisors coincides with the one used in [\[BGMPS16\]](#page-14-4) (see Remark [6.5\)](#page-13-0). For any semi-positive $\overline{D} = (D,(q_v)_v) \in \widehat{\mathrm{Div}}(X)_{\mathbb{R}}$ and for any

Date: September 29, 2021.

subvariety $Y \subseteq X$, we denote by $h_{\overline{D}}(Y)$ the height of Y with respect to \overline{D} (see section [3.2\)](#page-4-1). The main result in this paper is the following (see Corollary [6.4\)](#page-13-1).

Theorem 1.1. Let $\overline{D} = (D,(g_v)_v)$ be a semi-positive adelic R-Cartier divisor on X. Then \overline{D} is ample if and only if $h_{\overline{D}}(Y) > 0$ for every subvariety $Y \subseteq X$.

This theorem gives an affirmative answer to a question of Burgos Gil, Moriwaki, Philippon and Sombra [\[BGMPS16,](#page-14-4) Remark 3.21]. To our knowledge, it was known only under one of the following additional assumptions up to now:

- \overline{D} is an adelic Cartier divisor (Zhang's arithmetic Nakai-Moishezon criterion [\[Zha95a,](#page-14-1) Theorem 4.2], [\[Mor15,](#page-14-5) Corollary 5.1], [\[CM18,](#page-14-6) Theorem 1.2]);
- \overline{D} is a toric metrized R-Cartier divisor ([\[BGMPS16,](#page-14-4) Corollary 6.3]);
- X has dimension one ([\[Iko21,](#page-14-7) Corollary A.4]).

Given a semi-positive adelic R-Cartier divisor $\overline{D} = (D,(q_v)_v)$ on X and a subvariety $Y \subseteq X$ with $\deg_D(Y) := D^{\dim Y} \cdot Y \neq 0$, the normalized height of Y with respect to \overline{D} is defined by

$$
\widehat{h}_{\overline{D}}(Y) = \frac{h_{\overline{D}}(Y)}{(\dim Y + 1) \deg_D(Y)}.
$$

We also let $\zeta_{\text{abs}}(D) = \inf_{x \in X(\overline{K})} h_{\overline{D}}(x)$. The following theorem is our second main result, which plays an important role in this paper and might be of independent interest.

Theorem 1.2. Let $\overline{D} = (D,(q_v)_v)$ be a semi-positive adelic R-Cartier divisor on X. If D is ample, there exists a subvariety $Y \subseteq X$ such that

$$
\zeta_{\rm abs}(\overline{D}) = \widehat{h}_{\overline{D}}(Y) = \min_{Z \subseteq X} \widehat{h}_{\overline{D}}(Z),
$$

where the minimum is over the subvarieties $Z \subseteq X$.

In other words, the infimum of the normalized heights of subvarieties $Z \subseteq X$ is attained at a subvariety Y, which moreover satisfies $\hat{h}_{\overline{D}}(Y) = \zeta_{\text{abs}}(\overline{D})$. Our proof of Theorem [1.2](#page-1-0) is based on Zhang's theorem on successive minima [\[Zha95a,](#page-14-1) Theorem 5.2]. Although the latter does not appear in the literature for adelic R-Cartier divisors, we shall prove that it remains valid in this context thanks to a continuity property for successive minima (see Lemma [4.1](#page-8-0) and Theorem [4.3\)](#page-9-0). This approach also provides additional information on the subvariety $Y \subseteq X$ of Theorem [1.2](#page-1-0) (see Theorem [5.1\)](#page-10-0). Our proof of Theorem [1.1](#page-1-1) is very direct, and goes roughly as follows. Let $\overline{D} = (D,(q_v)_v) \in \overline{\text{Div}}(X)_{\mathbb{R}}$ be semi-positive, with D ample. Given a real number $t \in \mathbb{R}$, we define an adelic R-Cartier divisor $\overline{D}(t)$ by rescaling the metrics at archimedean places to have $h_{\overline{D}(t)}(Y) = h_{\overline{D}}(Y) - t$ for every subvariety $Y \subseteq X$ (see Definition [3.3](#page-3-1) and Lemma [3.7\)](#page-5-0). In view of Theorem [1.2,](#page-1-0) it suffices to prove that

$$
\sup\{t \in \mathbb{R} \mid \overline{D}(t) \text{ is ample}\} = \zeta_{\text{abs}}(\overline{D}).
$$

We denote by $\theta(\overline{D})$ the supremum on the left hand side. We first observe that Zhang's arithmetic Nakai-Moishezon criterion [\[Zha95a,](#page-14-1) Theorem 4.2] implies that $\theta(\overline{D}) = \zeta_{\text{abs}}(\overline{D})$ provided that \overline{D} is an adelic Cartier divisor. We simply deduce the general case (Theorem [6.1\)](#page-11-0) by slightly perturbing \overline{D} and by applying a continuity property for the invariants $\zeta_{\text{abs}}(\overline{D})$ and $\theta(\overline{D})$ (see Lemmas [4.1](#page-8-0) and [6.2\)](#page-12-0).

Organization of the paper. We fix some notation in section [2.](#page-2-0) In section [3](#page-3-2) we recall the definition of adelic R-Cartier divisors and of height of subvarieties. We also study some basic properties of ample adelic R-Cartier divisors. We define successive minima in section [4,](#page-8-1) and we establish a continuity property allowing us to extend Zhang's theorem on minima to adelic R-Cartier divisors (Lemma [4.1](#page-8-0) and

Theorem [4.3\)](#page-9-0). We prove Theorem [1.2](#page-1-0) in section [5](#page-10-1) (Theorem [5.1\)](#page-10-0) and Theorem [1.1](#page-1-1) in section [6](#page-11-1) (Corollary [6.4\)](#page-13-1).

2. Conventions and terminology

2.1. We say that a scheme is integral if it is reduced and irreducible. Given a Noetherian integral scheme X , we denote by $Div(X)$ the group of Cartier divisors on X and by Rat (X) the field of rational functions on X. If K denotes \mathbb{Z}, \mathbb{Q} or \mathbb{R} , we let Div(X)_K = Div(X) ⊗_Z K. The elements of Div(X)_K are called K-Cartier divisors on X. If X is normal, we denote by Supp D the support of a K-Cartier divisor D (see [\[Mor16,](#page-14-2) section 1.2] for details). It is a Zariski-closed subset of X. We let (ϕ) be the Cartier divisor associated to a rational function $\phi \in \text{Rat}(X)^{\times}$.

2.2. Let X be a projective variety over a field K , i.e. X is an integral projective scheme on Spec K. A subvariety $Y \subseteq X$ is an integral closed subscheme of X. Given an integer $r \in \{0, \ldots, \dim X\}$, a r-cycle is a formal linear combination with integer coefficients of r-dimensional subvarieties in X . Given a K-Cartier divisor D on X , we define the degree of a r-cycle Z with respect to D by $\deg_D(Z) = D^{\dim Z} \cdot Z$. In particular, if $x \in X(\overline{K})$ is a closed point (considered as a subvariety of X), then $\deg_D({x}) = [K(x) : K]$ is the degree over K of the residue field $K(x)$ of $x \in X$.

2.3. Throughout this text, we fix a number field K and an algebraic closure \overline{K} of K. We denote by Σ_K the set of places of K and by $\Sigma_{K,\infty} \subset \Sigma_K$ the set of archimedean places. For each $v \in \Sigma_K$, we let K_v be the completion of K with respect to v and we denote by $|.|_v$ the unique absolute value on K_v extending the usual absolute value $|.|_v$ on $\mathbb{Q}_v : |p|_v = p^{-1}$ if v is a non-archimedean place over a prime number p, and $|.|_v = |.|$ is the usual absolute value on $\mathbb R$ if v is archimedean.

2.4. Let X be a scheme on Spec K. For each $v \in \Sigma_K$, we let $X_v = X \times_K \text{Spec } K_v$ be the base change of X to K_v , and we denote by X_v^{an} the anylitification of X_v in the sense of Berkovich (see [\[Mor16,](#page-14-2) section 1.3] for a short introduction). Given a closed point $x \in X_v$, we let $x^{\text{an}} \in X_v^{\text{an}}$ be the point corresponding to the unique absolute value on $K_v(x)$ extending $|.|_v$.

2.5. Let X be a normal projective variety on Spec K. Let $D \in \text{Div}(X)_{\mathbb{R}}$, $v \in \Sigma_K$ and let $D_v \in Div(X_v)_\mathbb{R}$ be the pullback of D to X_v . We consider an open covering $X_v = \bigcup_{i=1}^{\ell} U_i$ such that D_v is defined by $f_i \in \text{Rat}(X_v)^{\times} \otimes_{\mathbb{Z}} \mathbb{R}$ on U_i for each $i \in \{1, \ldots, \ell\}$. A continuous D-Green function on X_v^{an} is a function

$$
g_v: X_v^{\text{an}} \setminus (\text{Supp } D_v)^{\text{an}} \to \mathbb{R}
$$

such that $g_v + \ln |f_i|^2_v$ extends to a continuous function on the analytification U_i^{an} of U_i for each $i \in \{1, ..., \ell\}$. When v is archimedean, we say that g_v is smooth (respectively plurisubharmonic) if the extension of $g_v + \ln |f_i|^2_v$ to U_i^{an} is smooth (respectively plurisubharmonic) for each $i \in \{1, \ldots, \ell\}$. We refer the reader to [\[Mor16,](#page-14-2) sections 1.4 and 2.1] for more details on Green functions.

2.6. Let X be a normal projective variety on Spec K. Let $D \in Div(X)_{\mathbb{K}}$ and let $U \subseteq \text{Spec } \mathcal{O}_K$ be a non-empty open subset, where \mathcal{O}_K is the ring of integers of K. A normal model $\mathcal X$ of X over U is an integral normal scheme $\mathcal X$ together with a projective dominant morphism $\pi_{\mathcal{X}}: \mathcal{X} \to U$ with generic fiber X. If D is a K-Cartier divisor on $\mathcal X$ such that the restriction of $\mathcal D$ to X is equal to D , we say that (X, \mathcal{D}) is a normal model of (X, D) over U. For each non-archimedean place $v \in U$, we denote by $g_{\mathcal{D},v}$ the D-Green function on X_v^{an} induced by \mathcal{D} (see [\[Mor16,](#page-14-2) section 0.2] for details on this construction).

4 FRANÇOIS BALLAŸ

3. Adelic R-Cartier divisors

In the rest of the text, we consider a normal and geometrically integral projective variety X over the number field K . We define adelic \mathbb{R} -Cartier divisors in subsection [3.1.](#page-3-3) We then recall the notion of semi-positive adelic R-Cartier divisors and we define heights of subvarieties in subsection [3.2.](#page-4-1) Subsection [3.3](#page-7-0) contains basic facts concerning ample adelic R-Cartier divisors.

3.1. **Definitions.** In this paragraph, \mathbb{K} denotes either \mathbb{Z}, \mathbb{Q} or \mathbb{R} .

Definition 3.1. An adelic K-Cartier divisor on X is a pair $\overline{D} = (D,(q_v)_{v \in \Sigma_K})$ consisting of a K-Cartier divisor D on X and of a continuous D -Green function g_v on X_v^{an} for each $v \in \Sigma_K$, satisfying the following condition: there exist a dense open subset U of Spec \mathcal{O}_K and a normal model $(\mathcal{X}, \mathcal{D})$ of (X, D) over U such that $g_v = g_{\mathcal{D},v}$ for all $v \in U$.

The set of adelic K-Cartier divisors on X is a K-module, denoted by $\text{Div}(X)_{\mathbb{K}}$. Since X is normal, the natural map $Div(X) \to Div(X)_{\mathbb{K}}$ is injective. It follows that $\text{Div}(X)_{\mathbb{Z}} \subset \text{Div}(X)_{\mathbb{Q}} \subset \text{Div}(X)_{\mathbb{R}}$. In the sequel, the elements of $\text{Div}(X) :=$ $\widehat{\mathrm{Div}}(X)_{\mathbb{Z}}$ will be called adelic Cartier divisors for simplicity.

Let $\overline{D} = (D,(g_v)_{v \in \Sigma_K})$ be an adelic R-Cartier divisor on X. We consider the K-vector space

$$
H^{0}(X,D) := \{ \phi \in \text{Rat}(X)^{\times} \mid D + (\phi) \ge 0 \} \cup \{0\}.
$$

For any $\phi \in (\text{Rat}(X)^{\times} \otimes_{\mathbb{Z}} \mathbb{R}) \cup \{0\}$ and any $v \in \Sigma_K$, we let ϕ_v be the pullback of ϕ on X_v^{an} and we consider the function $\|\phi\|_v^D := |\phi_v|_v \exp(-g_v/2)$, defined on an open subset of X_v^{an} . If $\phi \in H^0(X, D)$, the function $\|\phi\|_v^D$ extends to a continuous function on X_v^{an} (see [\[Mor16,](#page-14-2) Propositions 1.4.2 and 2.1.3]). In that case, we let $\|\phi\|_{v,\text{sup}}^D := \sup_{x \in X_v^{\text{an}}} \|\phi\|_v^D(x)$. We also define the set of strictly small sections of \overline{D} by

$$
\widehat{H}^0(X,\overline{D}):=\{\phi\in H^0(X,D)\mid \|\phi\|_{v,\sup}^{\overline{D}}\leq 1\,\,\forall v\in\Sigma_K,\ \ \|\phi\|_{v,\sup}^{\overline{D}}<1\,\,\forall v\in\Sigma_{K,\infty}\}.
$$

Remark 3.2. Let $\overline{D} \in \widehat{\mathrm{Div}}(X)$ be an adelic Cartier divisor. With the above notation, the pair $(\mathcal{O}_X(D), (\|.\|_v^D)_{v \in \Sigma_K})$ is an adelic metrized line bundle in the sense of Zhang [\[Zha95b,](#page-14-3) (1.2)]. One can see that every adelic metrized line bundle $\overline{L} = (L,(\Vert .\Vert_v)_{v\in\Sigma_K})$ on X can be obtained in this way by considering the Cartier divisor $D = \text{div}(s)$ associated to a trivialization s of L and the D-Green functions $g_v = -\ln \|s_v\|_v^2$ for every $v \in \Sigma_K$, where s_v is the pullback of s to X_v^{an} .

We end this paragraph with the definition of twists of adelic R-Cartier divisors, which we shall use frequently in the rest of the text.

Definition 3.3. Let $\overline{D} \in \widehat{\text{Div}}(X)_{\mathbb{R}}$. For any real number $t \in \mathbb{R}$, we define the t-twist of \overline{D} by

$$
\overline{D}(t) = \overline{D} - t\overline{\xi}_{\infty} \in \widehat{\operatorname{Div}}(X)_{\mathbb{R}},
$$

where $\bar{\xi}_{\infty} = (0,(\xi_v)_{v \in \Sigma_K})$ is the adelic Cartier divisor on X given by $\xi_v = 2$ if v is archimedean, and $\xi_v = 0$ otherwise.

It follows from the definitions that for any $\phi \in H^0(X, D)$, we have $\|\phi\|_v^{D(t)} =$ $e^t \|\phi\|_v^{\overline{D}}$ for every $v \in \Sigma_{K,\infty}$ and $\|\phi\|_v^{D(t)} = \|\phi\|_v^{\overline{D}}$ for every $v \in \Sigma_K \setminus \Sigma_{K,\infty}$.

3.2. Semi-positivity and heights of subvarieties. Let us first define the height of a point $x \in X(\overline{K})$ with respect to an adelic R-Cartier divisor \overline{D} on X. Let $\phi \in$ $\text{Rat}(X)^\times \otimes_{\mathbb{Z}} \mathbb{R}$ be a function with $x \notin \text{Supp}(D+(\phi))$ and let $K(x)$ be the function field of $x \in X$. For each place $w \in \Sigma_{K(x)}$, we fix a K-embedding $\sigma_w : K(x) \hookrightarrow \overline{K}_v$, where v denotes the restriction of w to K (note that there are exactly $[K(x)_w : K_v]$ such embeddings). The pair (x, σ_w) determines uniquely a point $x_w \in X_v$, and the quantity $\|\phi\|_w^D(x) := \|\phi\|_v^D(x_w^{\text{an}})$ does not depend on the choice of σ_w . The normalized height of x with respect to \overline{D} is the real number

$$
\widehat{h}_{\overline{D}}(x) = - \sum_{w \in \Sigma_{K(x)}} \frac{[K(x)_w : \mathbb{Q}_w]}{[K(x) : \mathbb{Q}]} \ln \| \phi \|_w^{\overline{D}}(x).
$$

This definition does not depend on the choice of ϕ by [\[Mor16,](#page-14-2) (4.2.1)]. Moreover, if $\phi \in H^0(X, D) \setminus \{0\}$ then it follows from the definitions that

(3.1)
$$
\widehat{h}_{\overline{D}}(x) \geq -\sum_{v \in \Sigma_K} \frac{[K_v : \mathbb{Q}_v]}{[K : \mathbb{Q}]} \ln \|\phi\|_{v, \sup}^{\overline{D}}.
$$

In order to define the height of higher dimensional subvarieties, we need the notion of semi-positive adelic R-Cartier divisors which we recall below.

Definition 3.4. Let $\overline{D} = (D,(g_v)_{v \in \Sigma_K}) \in \widehat{\text{Div}}(X)_{\mathbb{R}}$. We say that \overline{D} is semi-positive if there exists a sequence $(\mathcal{X}_n, \mathcal{D}_n, (g_{n,v})_{v \in \Sigma_K})_{n \in \mathbb{N}}$ such that :

- for all $n \in \mathbb{N}$, $(\mathcal{X}_n, \mathcal{D}_n)$ is a normal Spec \mathcal{O}_K -model for (X, D) with \mathcal{D}_n relatively nef,
- for all $n \in \mathbb{N}$, $g_{n,v}$ is a smooth plurisubharmonic D-Green function if $v \in$ $\Sigma_{K,\infty}$ and $g_{n,v} = g_{\mathcal{D}_n,v}$ for every non-archimedean $v \in \Sigma_K$,
- for every $v \in \Sigma_K$, $(g_{n,v})_{n \in \mathbb{N}}$ converges uniformly to g_v .

Remark 3.5.

- (1) It follows from the definition that the sum of semi-positive adelic R-Cartier divisors is semi-positive. Moreover, if $\overline{D} \in \overline{\mathrm{Div}}(X)_{\mathbb{R}}$ is semi-positive then $\overline{D}(t)$ is semi-positive for any $t \in \mathbb{R}$.
- (2) An adelic Cartier divisor $\overline{D} \in \widehat{\text{Div}}(X)$ is semi-positive if and only if the associated line bundle $(\mathcal{O}_X(D), (\Vert . \Vert_v^D)_{v \in \Sigma_K})$ of Remark [3.2](#page-3-4) is semi-positive in the sense of Zhang [\[Zha95b,](#page-14-3) (1.3)] (see [\[BGMPS16\]](#page-14-4), (1) page 229).

Following [\[BGMPS16\]](#page-14-4), we say that an adelic R-Cartier divisor \overline{D} on X is DSP if $\overline{D} = \overline{D}_1 - \overline{D}_2$ is the difference of two semi-positive $\overline{D}_1, \overline{D}_2 \in \widehat{\text{Div}}(X)_{\mathbb{R}}$. Let \overline{D} be a DSP adelic R-Cartier divisor on X and let $Y \subseteq X$ be a r-dimensional subvariety, where $0 \le r \le \dim X$ is an integer. For any place $v \in \Sigma_K$, we define a measure $c_1(\overline{D})^{\wedge \dim Y} \wedge \delta_{Y_v^{\text{an}}}$ on X_v^{an} as in [\[BGMPS16,](#page-14-4) page 225]. It is obtained by multilinearity from the corresponding measures associated to semi-positive adelic Cartier divisors defined in [\[BGPS14,](#page-14-8) Definition 1.4.6]. The measure $c_1(\overline{D})^{\wedge \dim Y} \wedge \delta_{Y_{v}^{\text{an}}}$ is supported on $Y_v^{\text{an}} \subseteq X_v^{\text{an}}$ and has total mass $\text{deg}_D(Y)$.

Let $\Phi = (\phi_0, \ldots, \phi_r) \in (\text{Rat}(X)^\times \otimes_{\mathbb{Z}} \mathbb{R})^{\oplus r}$ be a family intersecting Y properly in the following sense: for every $I \subseteq \{0, \ldots, r\},\$

$$
Y \cap \left(\bigcap_{i \in I} \mathrm{Supp}((\phi_i) + D) \right)
$$

is of pure dimension $r - #I$. The local height $h_{\overline{D}, \Phi, v}(Y)$ of Z at v with respect to (\overline{D}, Φ) is defined inductively as follows. We put $h_{\overline{D}, \Phi, v}(\emptyset) = 0$, and

$$
(3.2) \ \ h_{\overline{D},\Phi,v}(Z) = h_{\overline{D},(\phi_1,\ldots,\phi_r),v}(Y \cdot (D+(\phi_0))) - \int_{X_v^{\text{an}}} \ln \|\phi_0\|_v^{\overline{D}} c_1(\overline{D})^{\wedge \dim Y} \wedge \delta_{Y_v^{\text{an}}}.
$$

It follows from [\[BGPS14,](#page-14-8) Proposition 1.5.14] that $h_{\overline{D},\Phi,v}(Y) = 0$ for all except finitely many places $v \in \Sigma_K$. The height of Y with respect to \overline{D} is the real number

$$
h_{\overline{D}}(Y) = \sum_{v \in \Sigma_K} \frac{[K_v : \mathbb{Q}_v]}{[K : \mathbb{Q}]} h_{\overline{D}, \Phi, v}(Y);
$$

it does not depend on the choice of Φ . If $Y \subseteq X$ is a subvariety with $\deg_{D}(Y) \neq 0$, the normalized height of Y with respect to \overline{D} is the real number

$$
\widehat{h}_{\overline{D}}(Y) = \frac{h_{\overline{D}}(Y)}{(\dim Y + 1) \deg_D(Y)}.
$$

Remark 3.6.

- (1) If $Y = \{x\}$ is a closed point in X, then $\widehat{h}_{\overline{D}}(Y)$ coincides with the normalized height $h_{\overline{D}}(x)$ of x.
- (2) The height function is continuous in the following sense: for any DSP adelic R-Cartier divisor \overline{D}' on X, we have

$$
\lim_{t \to 0} h_{\overline{D} + t\overline{D}'}(Y) = h_{\overline{D}}(Y).
$$

If moreover $\deg_D(Y) \neq 0$, then $\deg_{D+ tD'}(Y) \neq 0$ for any sufficiently small $t \in \mathbb{R}$ and we have $\lim_{t \to 0} \widehat{h}_{\overline{D} + t\overline{D}'}(Y) = \widehat{h}_{\overline{D}}(Y)$.

(3) Assume that $\overline{D} \in \widehat{\mathrm{Div}}(X)_{\mathbb{R}}$ is semi-positive, and let

$$
(\mathcal{X}_n, \mathcal{D}_n, (g_{n,v})_{v \in \Sigma_K})_{n \in \mathbb{N}}
$$

be a sequence as in Definition [3.4.](#page-4-0) Given $n \in \mathbb{N}$, let $\overline{D}_n = (D,(g_{n,v})_{v \in \Sigma_K}).$ Then we have $\lim_{n\to\infty} h_{\overline{D}_n}(Y) = h_{\overline{D}}(Y)$, and moreover $\lim_{n\to\infty} h_{\overline{D}_n}(Y) =$ $\overline{h}_{\overline{D}}(Y)$ if $\deg_D(Y) \neq 0$.

(4) Assume that $\overline{D} = (D,(g_v)_{v \in \Sigma_K}) \in \widehat{\text{Div}}(X)$ is a semi-positive adelic Cartier divisor such that there exists a Spec \mathcal{O}_K -model $(\mathcal{X}, \mathcal{D})$ of (X, D) with $g_v =$ $g_{\mathcal{D},v}$ for every non-archimedean place $v \in \Sigma_K$. Then

$$
\overline{\mathcal{L}} = (\mathcal{O}_{\mathcal{X}}(\mathcal{D}), (\|.\|_{v}^{D})_{v \in \Sigma_{K,\infty}})
$$

is a semi-positive hermitian line bundle in the sense of [\[Zha95a\]](#page-14-1) and we have $h_{\overline{D}}(Y) = c_1(\overline{\mathcal{L}}_{|\mathcal{Y}})^{\dim \mathcal{Y}}$, where $\mathcal Y$ is the Zariski-closure of Y in X (see [\[Zha95a,](#page-14-1) (1.2)] for the definition of $c_1(\overline{\mathcal{L}}_{|\mathcal{Y}})^{\dim \mathcal{Y}}$.

We have the following lemma concerning the behaviour of heights with respect to twists of adelic R-Cartier divisors (see Definition [3.3\)](#page-3-1).

Lemma 3.7. Let $\overline{D} = (D,(g_v)_{v \in \Sigma_K})$ be a DSP adelic R-Cartier divisor on X and let $Y \subseteq X$ be a subvariety. For any $t \in \mathbb{R}$, we have

$$
h_{\overline{D}(t)}(Y) = h_{\overline{D}}(Y) - t(\dim Y + 1) \deg_D(Y).
$$

In particular, if $\deg_D(Y) \neq 0$ then $h_{\overline{D}(t)}(Y) = h_{\overline{D}}(Y) - t$.

Proof. The result follows from [\(3.2\)](#page-4-2) by induction on dim Y.

Let $r \in \{0, \ldots, \dim X\}$ and let Z be a r-cycle in $X_{\overline{K}} = X \times_K \text{Spec } \overline{K}$. There exists a finite extension K' of K such that Z is defined over K' , i.e. Z is a r-cycle in $X_{K'} = X \times_K \text{Spec } K'$: there exists integers a_1, \ldots, a_ℓ and subvarieties Y_1, \ldots, Y_ℓ of $X_{K'}$ such that $Z = \sum_{i=1}^{\ell} a_i Y_{i,\overline{K}}$. Given a DSP $\overline{D} \in \widehat{\text{Div}}(X)_{\mathbb{R}}$, we define a DSP adelic R-Cartier divisor \overline{D}_{K} by pulling back \overline{D} to X_{K} . The height of Z with respect to \overline{D} is then defined by $h_{\overline{D}}(Z) = \sum_{i=1}^{\ell} a_i h_{\overline{D}_{K'}}(Y_i)$. This definition does not depend on the choice of K' by [\[BGPS14,](#page-14-8) Proposition 1.5.10].

Lemma 3.8. Let \overline{D} be a DSP adelic R-Cartier divisor on X. The following conditions are equivalent:

(1) $h_{\overline{D}}(Y) > 0$ for every subvariety $Y \subseteq X$; (2) $h_{\overline{D}}(Y) > 0$ for every subvariety $Y \subseteq X_{\overline{K}}$.

Proof. The implication [\(2\)](#page-6-0) \implies [\(1\)](#page-6-1) is clear. Assume that (1) holds and let $Y \subseteq X_{\overline{K}}$ be a subvariety. Let $Gal(\overline{K}/K)$ be the set of K-automorphisms $\sigma: \overline{K} \to \overline{K}$. For any $\sigma \in \text{Gal}(\overline{K}/K)$, we denote by Y^{σ} the pullback of Y by the automorphism of $X_{\overline{K}}$ induced by σ ; it is a subvariety of $X_{\overline{K}}$. We consider the set

$$
O(Y) = \{ Y^{\sigma} \mid \sigma \in \text{Gal}(\overline{K}/K) \}.
$$

It follows easily from the definitions that $h_{\overline{D}}(Y') = h_{\overline{D}}(Y)$ for any $Y' \in O(Y)$ (alternatively, this fact is a direct consequence of [\[BGPS14,](#page-14-8) Theorem 1.5.11]). By [\[BG06,](#page-14-9) A.4.13],

$$
Z_Y = \bigcup_{Y' \in O(Y)} Y'
$$

is a subvariety of X (i.e. its image in X is an irreducible Zariski closed subset of X , which we still denote by Z_Y). Therefore $h_{\overline{D}}(Z_Y) > 0$ by assumption. Let K' be a finite extension such that every $Y' \in O(Y)$ is a subvariety of $X_{K'}$. Let $(Z_Y)_{K'}$ be the cycle in $X_{K'}$ associated to Z_Y : we have

$$
(Z_Y)_{K'} = \sum_{Y' \in O(Y)} n_{Y'} Y',
$$

where $n_{Y'}$ is a positive integer for every $Y' \in O(Y)$. By [\[BGPS14,](#page-14-8) Proposition 1.5.10], we have $h_{\overline{D}}((Z_Y)_{K'}) = h_{\overline{D}}(Z_Y) > 0$. On the other hand, we have

$$
h_{\overline{D}}((Z_Y)_{K'}) = \sum_{Y' \in O(Y)} n_{Y'} h_{\overline{D}}(Y') = h_{\overline{D}}(Y) \times \sum_{Y' \in O(Y)} n_{Y'},
$$

and therefore $h_{\overline{D}}(Y) > 0$.

We end this paragraph with a sufficient condition for the ampleness of the underlying divisor of an adelic R-Cartier divisor.

Lemma 3.9. Let $\overline{D} = (D, (g_v)_{v \in \Sigma_K}) \in \widehat{\text{Div}}(X)_{\mathbb{R}}$ be semi-positive. Assume that $h_{\overline{D}}(Y) > 0$ for every subvariety $Y \subseteq X$. Then D is ample.

We want to combine Campana and Peternell's Nakai-Moishezon criterion for R-Cartier divisors [\[CP90\]](#page-14-0) with Moriwaki's generalized Hodge index theorem [\[Mor16,](#page-14-2) Theorem 5.3.2 applied to subvarieties of X . We must pay attention to the fact that [\[Mor16,](#page-14-2) Theorem 5.3.2] applies only to normal and geometrically integral subvarieties.

Proof. Let $Y \subseteq X_{\overline{K}}$ be a subvariety and let K' be a finite extension of K such that Y is defined over K'. We consider the adelic R-Cartier divisor $\overline{D}_{K'}$ = $(D_{K'},(g_w)_{w\in\Sigma_{K'}})$ defined by pulling back \overline{D} to $X_{K'}$. Let $f:Y'\to Y$ be the normalization of Y and let $\phi \in \text{Rat}(X_{K'})^{\times} \otimes_{\mathbb{Z}} \mathbb{R}$ be such that $Y \nsubseteq \text{Supp}(D_{K'} + (\phi)).$ Note that Y' is normal and geometrically integral. We define a semi-positive adelic R-Cartier divisor $\overline{D}_{Y'} = (D_{Y'}, (g_{Y',w})_{w \in \Sigma_{K'}})$ on Y' as follows: $D_{Y'} =$ $f^*(D_{K'}+(\phi))_{|Y}$ and for each $w \in \Sigma_{K'}$, the $D_{Y'}$ -Green function $g_{Y',w}$ is the pullback of $(g_w - 2 \ln |\phi|_w)_{|Y_w^{\text{an}}}$ to $(Y_w')^{\text{an}}$. By [\[BGPS14,](#page-14-8) Theorem 1.5.11 (2)], we have $h_{\overline{D}_{Y'}}(Y') = h_{\overline{D}_{K'}}(Y)$. Therefore our assumption together with Lemma [3.8](#page-6-2) implies that $h_{\overline{D}_{Y'}}(Y') = h_{\overline{D}_{K'}}(Y) > 0$. It follows from [\[Mor16,](#page-14-2) Theorem 5.3.2] that $\overline{D}_{Y'}$ is big in the sense of [\[Mor16,](#page-14-2) Definition 4.4.1]. In particular, $D_{Y'}$ is big. Since $D_{Y'}$

is also nef by semi-positivity, we have $D_{K'}^{\dim Y} \cdot Y = D_{Y'}^{\dim Y'} \cdot Y' > 0$. Therefore D is ample by [\[CP90,](#page-14-0) Theorem 1.3].

 \Box

3.3. Ample adelic R-Cartier divisors. We now define ample adelic R-Cartier divisors and study some of their properties.

Definition 3.10. Let $\overline{D} = (D, (g_v)_{v \in \Sigma_K})$ be an adelic R-Cartier divisor. We say that \overline{D} is

- weakly ample (w-ample for short) if $\overline{D} = \sum_{i=1}^{\ell} \lambda_i \overline{A}_i$ is a R-linear combination of adelic Cartier divisors $\overline{A}_i \in \widehat{\text{Div}}(X)$ such that for each $i \in \{1, \ldots, \ell\}$, $\lambda_i > 0$, A_i is ample and for every $m \gg 1$, $H^0(X, mA_i)$ has a K-basis consisting of strictly small sections;
- ample if it is w-ample and semi-positive.

The terminology of weakly ample adelic R-Cartier divisors is due to Ikoma [\[Iko21\]](#page-14-7).We end this section with three lemmas concerning basic properties of wample adelic R-Cartier divisors.

Lemma 3.11. Let $\overline{D}, \overline{D}' \in \widehat{\text{Div}}(X)_{\mathbb{R}}$. If \overline{D} is w-ample, there exists a real number $\varepsilon > 0$ such that $\overline{D} + t\overline{D}'$ is ample for any $t \in \mathbb{R}$ with $|t| \leq \varepsilon$.

Proof. Without loss of generality, we only consider the case where $\overline{D}' \in \widehat{\text{Div}}(X)$ and $t \geq 0$. If \overline{D} is w-ample, $\overline{D} = \sum_{i=1}^{\ell} \lambda_i \overline{A}_i$ is a R-linear combination with positive coefficients of adelic Cartier divisors $\overline{A}_i \in \overline{\mathrm{Div}}(X)$ such that for each $i \in \{1, \ldots, \ell\}$, A_i is ample and $H^0(X, mA_i)$ has a K-basis consisting of strictly small sections for $m \gg 1$. By [\[Iko16,](#page-14-10) Proposition 5.4 (5)], there exists a $\delta > 0$ such that $\overline{A}_1 + \delta \overline{D}'$ is w-ample. Let $\varepsilon = \delta \lambda_1$. Then for every real number $t \in [0, \varepsilon]$,

$$
\overline{D} + t\overline{D}' = \frac{t}{\delta}(\overline{A}_1 + \delta \overline{D}') + (\lambda_1 - \frac{t}{\delta})\overline{A}_1 + \sum_{i=2}^{\ell} \lambda_i \overline{A}_i
$$

is w-ample. \Box

Remark 3.12. By Lemma [3.11](#page-7-1) and [\[Mor16,](#page-14-2) Lemma 1.1.1], an adelic Cartier divisor $\overline{D} = (D,(g_v)_{v \in \Sigma_K}) \in \overline{\text{Div}}(X)$ on X is w-ample if and only if D is ample and $H^0(X, mD)$ has a K-basis consisting of strictly small sections for every $m \gg 1$.

Lemma 3.13. Let \overline{D} be a w-ample adelic R-Cartier divisor on X. Then

$$
\inf_{x \in X(\overline{K})} \widehat{h}_{\overline{D}}(x) > 0.
$$

Proof. By definition, we can write $\overline{D} = \sum_{i=1}^{\ell} \lambda_i \overline{A}_i$ where for each $i \in \{1, ..., \ell\}, \lambda_i$ is a positive real number, \overline{A}_i is an adelic Cartier divisor such that A_i is ample, and $H^0(X, mA_i)$ has a K-basis consisting of strictly small sections for every $m \gg 1$. Let $m \geq 1$ be an integer such that for each $i \in \{1, \ldots, \ell\}$, there exists a set of functions $\phi_{i,1}, \ldots, \phi_{i,k_i} \in \widehat{H}^0(X, mA_i)$ with

$$
\bigcap_{j=1}^{k_i} \text{Supp}(mA_i + (\phi_{i,j})) = \emptyset.
$$

Letting

$$
\Lambda_i:=-\max_{1\leq j\leq k_i}\sum_{v\in \Sigma_K}\frac{[K_v:\mathbb{Q}_v]}{[K:\mathbb{Q}]} \ln\|\phi_{i,j}\|_{v,\sup}^{m\overline{A}_i}>0,
$$

we have $h_{\overline{A}_i}(x) \geq \Lambda_i/m$ for every $x \in X(K)$ (see [\(3.1\)](#page-4-3)). Therefore we have

$$
\inf_{x \in X(\overline{K})} \widehat{h}_{\overline{D}}(x) \ge \sum_{i=1}^{\ell} \lambda_i \inf_{x \in X(\overline{K})} \widehat{h}_{\overline{A}_i}(x) \ge \sum_{i=1}^{\ell} \lambda_i \Lambda_i / m > 0.
$$

Lemma 3.14. Let $\overline{D} = (D, (g_v)_{v \in \Sigma_K})$ be an adelic R-Cartier divisor. If D is ample, there exists a real number $t \in \mathbb{R}$ such that $\overline{D}(t)$ is w-ample.

Proof. Since D is ample, there exists an ample $\overline{A} \in \widehat{\text{Div}}(X)_{\mathbb{R}}$ such that $\overline{D} - \overline{A} \in$ $\widehat{\text{Div}}(X)_{\mathbb{Q}}$ and $D - A$ is ample. For a sufficiently large and divisible integer m, $m(D - A)$ is a very ample Cartier divisor on X. Let $(\phi_1, \ldots, \phi_\ell)$ be basis of $H^0(X, m(D-A))$ such that $\|\phi_i\|_{v, \text{sup}}^{m(D-A)} \leq 1$ for every $i \in \{1, ..., \ell\}$ and every non-archimedean place $v \in \Sigma_K$. Let $t \in \mathbb{R}$ be a real number such that

$$
t < -\max_{1 \le i \le \ell} \max_{v \in \Sigma_{K,\infty}} \ln \|\phi_i\|_{v,\sup}^{m(\overline{D} - \overline{A})}.
$$

Then $\phi_i \in \widehat{H}^0(X, m(\overline{D} - \overline{A})(t))$ for every i, and it follows that \overline{A}'_t $t_t := (D - A)(t) =$ $\overline{D}(t) - \overline{A}$ is ample. Therefore $\overline{D}(t) = \overline{A} + \overline{A}'_t$ $\frac{1}{t}$ is ample.

4. Zhang's theorem on successive minima

In this section we recall the notion of successive minima for adelic R-Cartier divisors, which was first introduced by Zhang for hermitian line bundles [\[Zha95a,](#page-14-1) section 5]. We then prove a continuity property which allows to extend Zhang's theorem on minima [\[Zha95a,](#page-14-1) Theorem 5.2] to the case of adelic R-Cartier divisors (see Lemma [4.1](#page-8-0) and Theorem [4.3](#page-9-0) below).

Let $\overline{D} \in \overline{\mathrm{Div}}(X)_{\mathbb{R}}$ and let $Z \subseteq X$ be a subvariety. For any $i \in \{1, \ldots, \dim Z + 1\},$ we define the *i*-th successive minimum of \overline{D} on Z by

$$
\zeta_i(\overline{D}, Z) = \sup_{\substack{Y \subseteq Z \\ \dim Y < i-1}} \inf_{x \in Z(\overline{K}) \setminus Y} \widehat{h}_{\overline{D}}(x) \in \mathbb{R} \cup \{-\infty\},\
$$

where the supremum is over all the Zariski-closed subsets $Y \subseteq Z$ of dimension $\dim Y < i-1$. We obtain a chain of real numbers

 $\zeta_{\dim Z+1}(\overline{D},Z) \geq \zeta_{\dim Z}(\overline{D},Z) \geq \cdots \geq \zeta_1(\overline{D},Z).$

Successive minima satisfy the following properties.

Lemma 4.1. Let $\overline{D} = (D, (g_v)_{v \in \Sigma_K}) \in \widehat{\text{Div}}(X)_{\mathbb{R}}$. Let $Z \subseteq X$ be a subvariety and let $1 \leq i \leq \dim Z + 1$ be an integer.

(1) For any $\overline{D}' \in \widehat{\operatorname{Div}}(X)_{\mathbb{R}}$, we have

$$
\zeta_i(\overline{D}+\overline{D}',Z)\geq \zeta_i(\overline{D},Z)+\zeta_i(\overline{D}',Z).
$$

(2) Let
$$
\overline{D}_1, ..., \overline{D}_\ell \in \widetilde{\mathrm{Div}}(X)_{\mathbb{R}}
$$
. If D is ample, then
\n
$$
\lim_{\max\{|t_1|, ..., |t_\ell|\} \to 0} \zeta_i(\overline{D} + t_1 \overline{D}_1 + \dots + t_\ell \overline{D_\ell}, Z) = \zeta_i(\overline{D}, Z).
$$

Proof. [\(1\)](#page-8-2) We may assume that $\zeta_i(\overline{D}, Z) > -\infty$ and $\zeta_i(\overline{D}', Z) > -\infty$. Let $t <$ $\zeta_i(\overline{D}, Z)$ and $t' < \zeta_i(\overline{D}', Z)$ be real numbers. By definition, there exist two closed subsets $Y, Y' \subseteq Z$ of dimension $\lt i - 1$ such that for any $x \in Z(\overline{K}) \setminus (Y \cup Y')$, we have

$$
\widehat{h}_{\overline{D}+\overline{D}'}(x) = \widehat{h}_{\overline{D}}(x) + \widehat{h}_{\overline{D}'}(x) \ge t + t'.
$$

Since $\dim(Y \cup Y') < i - 1$, we have

$$
\zeta_i(\overline{D} + \overline{D}', Z) \ge \inf_{x \in Z(\overline{K}) \setminus (Y \cup Y')} \widehat{h}_{\overline{D}}(x) \ge t + t',
$$

and we conclude by letting t and t' tend to $\zeta_i(\overline{D}, Z)$ and $\zeta_i(\overline{D}', Z)$.

[\(2\)](#page-8-3) If we replace \overline{D} by $\overline{D}(t)$ for some real number t, both sides of the equality differ by $-t$. By Lemma [3.14,](#page-8-4) we may therefore assume that \overline{D} is w-ample. Let $\varepsilon > 0$ be a real number. For $t_1, \ldots, t_\ell \in \mathbb{R}$ small enough, the adelic R-Cartier divisors

$$
(1+\varepsilon)\overline{D}-(\overline{D}+t_1\overline{D}_1+\cdots+t_\ell\overline{D_\ell})=\varepsilon\overline{D}-(t_1\overline{D}_1+\cdots+t_\ell\overline{D_\ell})
$$

and

$$
\overline{D} + t_1 \overline{D}_1 + \dots + t_\ell \overline{D}_\ell - (1 - \varepsilon) \overline{D} = \varepsilon \overline{D} + (t_1 \overline{D}_1 + \dots + t_\ell \overline{D_\ell})
$$

are w-ample by Lemma 3.11. Combining (1) and Lemma 3.13, we have

$$
(1+\varepsilon)\zeta_i(\overline{D},Z) \ge \zeta_i(\overline{D}+t_1\overline{D}_1+\cdots+t_\ell\overline{D}_\ell,Z) \ge (1-\varepsilon)\zeta_i(\overline{D},Z)
$$

and the result follows. $\hfill \Box$

Remark 4.2. Let $\overline{D} = (D,(g_v)_{v \in \Sigma_K}) \in \widehat{\text{Div}}(X)_{\mathbb{R}}$ be semi-positive. We consider a sequence $(\mathcal{X}_n, \mathcal{D}_n, (g_{n,v})_{v \in \Sigma_K})_{n \in \mathbb{N}}$ associated to \overline{D} as in Definition [3.4.](#page-4-0) For each $n \in \mathbb{N}$, let $\overline{D}_n = (D, (g_{n,v})_{v \in \Sigma_K})$. Then we have

$$
\lim_{n \to \infty} \zeta_i(\overline{D}_n, Z) = \zeta_i(\overline{D}, Z)
$$

for any subvariety $Z \subseteq X$ and any $i \in \{1, ..., \dim Z + 1\}$. Indeed, the sum

$$
\varepsilon_n := 2 \sum_{v \in \Sigma_K} \frac{[K_v:\mathbb{Q}_v]}{[K:\mathbb{Q}]} \sup_{z \in X_v^{\rm an}} |g_v(z) - g_{n,v}(z)|
$$

is finite for every $n \in \mathbb{N}$, and the sequence $(\varepsilon_n)_{n \in \mathbb{N}}$ converges to zero. By construction, we have

$$
\widehat{h}_{\overline{D}_n}(x) - \varepsilon_n \le \widehat{h}_{\overline{D}}(x) \le \widehat{h}_{\overline{D}_n}(x) + \varepsilon_n.
$$

for any $n \in \mathbb{N}$ and $x \in X(\overline{K})$. It follows that

$$
\zeta_i(\overline{D}_n, Z) - \varepsilon_n \leq \zeta_i(\overline{D}, Z) \leq \zeta_i(\overline{D}_n, Z) + \varepsilon_n
$$

as in the proof of Lemma [4.1](#page-8-0) [\(1\)](#page-8-2), and we conclude by letting n tend to infinity.

The following theorem was originally proved by Zhang for adelic Cartier divisors equipped with Green functions induced by a fixed model [\[Zha95a,](#page-14-1) Theorem 5.2]. Thanks to the continuity property of Lemma [4.1,](#page-8-0) it remains valid for adelic R-Cartier divisors.

Theorem 4.3. Assume that $\overline{D} = (D, (g_v)_{v \in \Sigma_K}) \in \overline{\text{Div}}(X)_{\mathbb{R}}$ is semi-positive and that D is ample. For any subvariety $Z \subseteq X$, we have

$$
\zeta_{\dim Z+1}(\overline{D},Z) \ge \widehat{h}_{\overline{D}}(Z) \ge \frac{1}{\dim Z+1} \sum_{i=1}^{\dim Z+1} \zeta_i(\overline{D},Z).
$$

Proof. Since D is ample, we can write $D = \sum_{i=1}^{\ell} \lambda_i A_i$ where for each $i \in \{1, \ldots, \ell\}$, $\lambda_i \in \mathbb{R}_{>0}$ and $A_i \in Div(X)$ is an ample Cartier divisor on X. Let $(g_{i,v})_{v\in\Sigma_K}$ be a collection of A_i -Green functions such that $A_i = (A_i, (g_{i,v})_{v \in \Sigma_K})$ is a semi-positive adelic Cartier divisor on X. Given a ℓ -tuple of real numbers $\mathbf{t} = (t_1, \ldots, t_\ell) \in \mathbb{R}^\ell$, we denote by $\overline{D}_{\mathbf{t}} = (D_{\mathbf{t}},(g_{\mathbf{t},v})_{v \in \Sigma_K})$ the adelic R-Cartier divisor

$$
\overline{D}_{\mathbf{t}} = \overline{D} + \sum_{i=1}^{\ell} t_i \overline{A}_i = \left(\sum_{i=1}^{\ell} (\lambda_i + t_i) A_i, (g_v + \sum_{i=1}^{\ell} t_i g_{i,v})_{v \in \Sigma_K} \right).
$$

Let $\varepsilon > 0$ be a real number. We can choose $\mathbf{t} \in [0, \varepsilon]^{\ell}$ such that $\overline{D}_{\mathbf{t}} \in \overline{\text{Div}}(X)_{\mathbb{Q}}$. Note that $\overline{D}_t \in \widehat{\mathrm{Div}}(X)_{\mathbb{Q}}$ is semi-positive. We consider a sequence

$$
(\mathcal{X}_{\mathbf{t},n}, \mathcal{D}_{\mathbf{t},n}, (g_{\mathbf{t},n,v})_{v \in \Sigma_K})_{n \in \mathbb{N}}
$$

associated to $\overline{D}_{\mathbf{t}}$ as in Definition [3.4,](#page-4-0) and we let $\overline{D}_{\mathbf{t},n} = (D_{\mathbf{t}},(g_{\mathbf{t},n,v})_{v \in \Sigma_K}) \in$ $\widehat{\mathrm{Div}}(X)_{\mathbb{Q}}$. Let m be a positive integer such that $mD_{\mathbf{t},n} \in \mathrm{Div}(X)$. By [\[Mor15,](#page-14-5) Theorem 0.2], the hermitian metrized line bundle $\overline{\mathcal{L}}_{m,\mathbf{t},n}$ associated to $m\overline{D}_{\mathbf{t},n}$ in Remark [3.6](#page-5-1) [\(4\)](#page-5-2) is semiample metrized in the sense of [\[Zha95a,](#page-14-1) section 5]. Therefore we can apply [\[Zha95a,](#page-14-1) Theorem 5.2] to the restriction of $\overline{\mathcal{L}}_{m,\mathbf{t},n}$ to the closure of Z in $\mathcal{X}_{\mathbf{t},n}$. We obtain

(4.1)
$$
\zeta_{\dim Z+1}(m\overline{D}_{\mathbf{t},n},Z) \geq \widehat{h}_{m\overline{D}_{\mathbf{t},n}}(Z) \geq \frac{1}{\dim Z+1} \sum_{i=1}^{\dim Z+1} \zeta_i(m\overline{D}_{\mathbf{t},n},Z)
$$

for any $n \in \mathbb{N}$ (see Remark [3.6](#page-5-1) [\(4\)](#page-5-2)). On the other hand we have $\widehat{h}_{m\overline{D}_{t,n}}(Z) =$ $mh_{\overline{D}_{\mathbf{t},n}}(Z)$ and $\zeta_i(m\overline{D}_{\mathbf{t},n},Z) = m\zeta_i(\overline{D}_{\mathbf{t},n},Z)$ for any $i \in \{1,\ldots,\dim Z+1\}$, and therefore [\(4.1\)](#page-10-2) remains true for $m = 1$. Letting n tend to infinity, we obtain

$$
\zeta_{\dim Z+1}(\overline{D}_{\mathbf{t}},Z) \ge \widehat{h}_{\overline{D}_{\mathbf{t}}}(Z) \ge \frac{1}{\dim Z+1} \sum_{i=1}^{\dim Z+1} \zeta_i(\overline{D}_{\mathbf{t}},Z)
$$

by Remarks [3.6](#page-5-1) [\(3\)](#page-5-3) and [4.2.](#page-9-1) Letting ε tend to zero, the result follows from the continuity of normalized heights and successive minima given by Remark [3.6](#page-5-1) [\(2\)](#page-5-4) and Lemma [4.1](#page-8-0) [\(2\)](#page-8-3).

 \Box

5. Absolute minimum and height of subvarieties

For any $D \in \text{Div}(X)_{\mathbb{R}}$, we call $\zeta_{\text{abs}}(D) := \zeta_1(D,X) = \inf_{x \in X(\overline{K})} h_{\overline{D}}(x)$ the absolute minimum of \overline{D} . The goal of this section is to prove the following statement, which refines Theorem [1.2](#page-1-0) in the introduction.

Theorem 5.1. Let $\overline{D} = (D, (g_v)_{v \in \Sigma_K})$ be a semi-positive adelic R-Cartier divisor on X. If D is ample, there exists a subvariety $Y \subseteq X$ such that

$$
\zeta_{\text{abs}}(\overline{D}) = \widehat{h}_{\overline{D}}(Y) = \min_{Z \subseteq X} \widehat{h}_{\overline{D}}(Z),
$$

where the minimum is over the subvarieties $Z \subseteq X$. Moreover, $\zeta_{\text{abs}}(\overline{D}) = \zeta_i(\overline{D}, Y)$ *for any* $i \in \{1, ..., \dim Y + 1\}.$

We begin with two preliminary lemmas.

Lemma 5.2. Let $\overline{D} = (D, (g_v)_{v \in \Sigma_K})$ be a semi-positive adelic R-Cartier divisor on X. Assume that D is ample. Then for any subvariety $Z \subseteq X$, the following conditions are equivalent:

- (1) $h_{\overline{D}}(Y) > 0$ for every subvariety $Y \subseteq Z$;
- (2) $\zeta_1(\overline{D}, Z) > 0$.

Proof. [\(1\)](#page-10-3) \implies [\(2\)](#page-10-4): If $Z = \{x\}$ is a point, then $\zeta_1(\overline{D}, Z) = \widehat{h}_{\overline{D}}(x) > 0$. We assume by induction that dim $Z > 0$ and that $\zeta_1(\overline{D}, Y) > 0$ for every subvariety $Y \subsetneq Z$. Since $h_{\overline{D}}(Z) > 0$, it follows from Theorem [4.3](#page-9-0) that there exists a closed subset $Y \subsetneq Z$ such that $\inf_{x \in Z(\overline{K}) \backslash Y} \widehat{h}_{\overline{D}}(x) > 0$. On the other hand, if Y_1, \ldots, Y_ℓ are the irreducible components of \hat{Y} then

$$
\inf_{x \in Z(\overline{K}) \cap Y} \widehat{h}_{\overline{D}}(x) = \min_{1 \le i \le \ell} \zeta_1(\overline{D}, Y_i) > 0
$$

12 FRANÇOIS BALLAŸ

by the induction hypothesis. Therefore we have

$$
\zeta_1(\overline{D},Z)=\min\{\inf_{x\in Z(\overline{K})\backslash Y}\widehat{h}_{\overline{D}}(x),\inf_{x\in Z(\overline{K})\cap Y}\widehat{h}_{\overline{D}}(x)\}>0.
$$

 $(2) \implies (1)$ $(2) \implies (1)$ $(2) \implies (1)$: Let $\zeta = \zeta_1(D, Z) > 0$. Note that $\overline{D}(\zeta) = \overline{D} - \zeta \xi_{\infty}$ is semi-positive and $\zeta_1(D(\zeta), Z) = \zeta_1(D, Z) - \zeta = 0$. For any subvariety $Y \subseteq Z$ we have

$$
\widehat{h}_{\overline{D}(\zeta)}(Y) \ge \zeta_1(\overline{D}(\zeta), Y) \ge \zeta_1(\overline{D}(\zeta), Z) = 0,
$$

where the first inequality is given by Theorem [4.3](#page-9-0) and the second one follows from the definitions. By Lemma [3.7,](#page-5-0) we have

$$
\widehat{h}_{\overline{D}}(Y) = \widehat{h}_{\overline{D}(\zeta)}(Y) + \zeta > \widehat{h}_{\overline{D}(\zeta)}(Y) \ge 0.
$$

Lemma 5.3. Let $\overline{D} = (D, (g_v)_{v \in \Sigma_K})$ be a semi-positive adelic R-Cartier divisor on X with D ample. Then

$$
\zeta_{\rm abs}(\overline{D}) = \inf_{Z \subseteq X} \widehat{h}_{\overline{D}}(Z),
$$

where the infimum is over the subvarieties $Z \subseteq X$.

Proof. By Zhang's Theorem [4.3,](#page-9-0) we have

 $\widehat{h}_{\overline{D}}(Z) \ge \zeta_1(\overline{D}, Z) \ge \zeta_{\text{abs}}(\overline{D})$

for any subvariety $Z \subseteq X$, and we deduce one inequality of the lemma by taking the infimum on Z. The converse inequality follows directly from the definition of $\zeta_{\rm abs}(\overline{D}).$ \Box

We are now ready to prove Theorem [5.1.](#page-10-0)

Proof of Theorem [5.1.](#page-10-0) Let $\zeta = \zeta_{\text{abs}}(\overline{D}) \in \mathbb{R}$. Note that $\overline{D}(\zeta)$ is semi-positive and $\zeta_{\text{abs}}(\overline{D}(\zeta)) = \zeta_{\text{abs}}(\overline{D}) - \zeta = 0$. By Theorem [4.3,](#page-9-0) we have

$$
\widehat{h}_{\overline{D}(\zeta)}(Y) \ge \zeta_1(\overline{D}(\zeta), Y) \ge \zeta_{\text{abs}}(\overline{D}(\zeta)) = 0
$$

for every subvariety $Y \subseteq X$. By Lemma [5.2](#page-10-5) applied to $Z = X$, there exists a subvariety $Y \subseteq X$ such that $h_{\overline{D}(\zeta)}(Y) = 0$. Therefore Lemma [3.7](#page-5-0) gives

$$
\zeta_{\text{abs}}(\overline{D}) = \widehat{h}_{\overline{D}}(Y) - \widehat{h}_{\overline{D}(\zeta)}(Y) = \widehat{h}_{\overline{D}}(Y).
$$

The fact that $\zeta_{\text{abs}}(\overline{D})$ coincides with the minimum in the theorem follows from Lemma [5.3.](#page-11-2) Finally, we observe that $\zeta_1(\overline{D}, Y) \geq \zeta_{\text{abs}}(\overline{D}) = \widehat{h}_{\overline{D}}(Y)$. Therefore Zhang's Theorem [4.3](#page-9-0) implies that $\zeta_{\text{abs}}(D) = \zeta_i(D, Y)$ for every integer $1 \leq i \leq$ $\dim Y + 1.$

6. Proof of Theorem [1.1](#page-1-1)

Given an adelic R-Cartier divisor \overline{D} on X, we introduce the invariant

$$
\theta(\overline{D}) := \sup\{t \in \mathbb{R} \mid \overline{D}(t) \text{ is w-ample}\} \in \mathbb{R} \cup \{-\infty\}
$$

(with the convention that sup $\emptyset = -\infty$). The main result of this section is the following theorem, from which we shall deduce Theorem [1.1](#page-1-1) (see Corollary [6.4](#page-13-1) below).

Theorem 6.1. Let $\overline{D} = (D, (g_v)_{v \in \Sigma_K})$ be a semi-positive adelic R-Cartier divisor on X. If D is ample, then $\zeta_{\text{abs}}(\overline{D}) = \theta(\overline{D})$.

Before proving this theorem, we gather some basic properties satisfied by the invariant $\theta(\overline{D})$ in the following lemma.

Lemma 6.2. Let $\overline{D} = (D,(g_v)_{v \in \Sigma_K}) \in \widehat{\text{Div}}(X)_{\mathbb{R}}$.

(1) For any $\overline{D}' \in \widehat{\mathrm{Div}}(X)_{\mathbb{R}}$, we have

$$
\theta(\overline{D} + \overline{D}') \ge \theta(\overline{D}) + \theta(\overline{D}').
$$

- (2) D is ample if and only if $\theta(\overline{D})$ is finite.
- (3) Let $\overline{D}_1, \overline{D}_2, \ldots, \overline{D}_\ell \in \widehat{\text{Div}}(X)_{\mathbb{R}}$. If D is ample, then

$$
\lim_{\max\{|t_1|,\ldots,|t_\ell|\}\to 0} \theta(\overline{D}+t_1\overline{D}_1+\cdots+t_\ell\overline{D_\ell})=\theta(\overline{D}).
$$

Proof. [\(1\)](#page-12-1) Clearly we may assume that $\theta(\overline{D}) > -\infty$ and $\theta(\overline{D}') > -\infty$. It suffices to observe that the sum of two w-ample adelic R-Cartier divisors is w-ample.

[\(2\)](#page-12-2) If $\theta(\overline{D})$ is finite, then clearly D is ample. Conversely, assume that D is ample. By Lemma [3.14,](#page-8-4) there exists $t \in \mathbb{R}$ such that $\overline{D}(t)$ is w-ample. Therefore $\theta(\overline{D}) \geq t$ is finite.

[\(3\)](#page-12-3) If we replace \overline{D} by $\overline{D}(t)$ for some real number t, both sides of the equality differ by $-t$. By Lemma [3.14,](#page-8-4) we may therefore assume that \overline{D} is w-ample. Let $\varepsilon > 0$ be a real number. For sufficiently small real numbers t_1, \ldots, t_ℓ , the adelic R-Cartier divisors

$$
(1+\varepsilon)\overline{D} - (\overline{D} + t_1\overline{D}_1 + \cdots + t_\ell\overline{D_\ell}) = \varepsilon\overline{D} - (t_1\overline{D}_1 + \cdots + t_\ell\overline{D_\ell})
$$

and

$$
\overline{D} + t_1 \overline{D}_1 + \dots + t_\ell \overline{D_\ell} - (1 - \varepsilon) \overline{D} = \varepsilon \overline{D} + (t_1 \overline{D}_1 + \dots + t_\ell \overline{D_\ell})
$$

are w-ample by Lemma [3.11.](#page-7-1) In particular,

$$
\theta(\varepsilon \overline{D} - (t_1 \overline{D}_1 + \dots + t_\ell \overline{D_\ell})) \ge 0 \text{ and } \theta(\varepsilon \overline{D} + (t_1 \overline{D}_1 + \dots + t_\ell \overline{D_\ell})) \ge 0
$$

by definition of θ . By [\(1\)](#page-12-1), we infer that

$$
(1+\varepsilon)\theta(\overline{D}) \ge \theta(\overline{D} + t_1\overline{D}_1 + \cdots + t_\ell\overline{D_\ell}) \ge (1-\varepsilon)\theta(\overline{D}),
$$

and the result follows.

Let us now prove Theorem [6.1.](#page-11-0) We shall combine Zhang's arithmetic Nakai-Moishezon criterion [\[Zha95a,](#page-14-1) Theorem 4.2] and the continuity property given by Lemma [6.2](#page-12-0) [\(3\)](#page-12-3).

Proof of Theorem [6.1.](#page-11-0) Since D is ample, we have $\theta(\overline{D}) > -\infty$ by Lemma [6.2](#page-12-0) [\(2\)](#page-12-2). Let $t < \theta(\overline{D})$ be a real number. By definition, $\overline{D}(t)$ is w-ample and Lemma [3.13](#page-7-2) gives

$$
\zeta_{\rm abs}(\overline{D}) - t = \zeta_{\rm abs}(\overline{D}(t)) > 0.
$$

By letting t tend to $\theta(\overline{D})$, we conclude that $\zeta_{\text{abs}}(\overline{D}) \geq \theta(\overline{D})$.

For the converse inequality, let us first assume that $\overline{D} \in \widehat{\text{Div}}(X)_{\mathbb{Q}}$. By homogeneity of $\theta(\overline{D})$ and $\zeta_{\text{abs}}(\overline{D})$, we may assume that \overline{D} is an adelic Cartier divisor without loss of generality. Let $t < \zeta_{\text{abs}}(\overline{D})$ be a real number. Since $\zeta_{\text{abs}}(\overline{D}(t))$ $\zeta_{\text{abs}}(\overline{D}) - t > 0$, we have

$$
h_{\overline{D}(t)}(Y) > 0
$$

for any subvariety $Y \subseteq X$ by Lemma [5.2.](#page-10-5) By [\[Zha95b,](#page-14-3) Theorem 1.7] (see also [\[Zha95b,](#page-14-3) Proof of Theorem 1.8]), for any subvariety $Y \subseteq X$ there exists an integer $n > 0$ such that $\widehat{H}^0(Y, n\overline{D}(t)|_Y) \neq 0$. By [\[CM18,](#page-14-6) Theorem 1.2], $\overline{D}(t)$ is w-ample. Therefore $\theta(\overline{D}) \geq t$, and we conclude by letting t tend to $\zeta_{\text{abs}}(\overline{D})$.

Let us now prove the equality $\zeta_{\text{abs}}(\overline{D}) = \theta(\overline{D})$ in full generality. Since D is ample, we can write $D = \sum_{i=1}^{\ell} \lambda_i A_i$ where for each $i \in \{1, ..., \ell\}, \lambda_i \in \mathbb{R}_{>0}$ and A_i is an ample Cartier divisor on X. For each $i \in \{1, \ldots, \ell\}$, we equip A_i with a collection

14 FRANÇOIS BALLAŸ

of A_i -Green functions $(g_{i,v})_{v \in \Sigma_K}$ such that $A_i = (A_i, (g_{i,v})_{v \in \Sigma_K}) \in \text{Div}(X)$ is semipositive. For any $\varepsilon > 0$, we can find a ℓ -tuple of real numbers $\mathbf{t} = (t_1, \ldots, t_\ell) \in [0, \varepsilon]^{\ell}$ such that

$$
\overline{D}_{\mathbf{t}} := \overline{D} + \sum_{i=1}^{\ell} t_i \overline{A}_i = \left(\sum_{i=1}^{\ell} (\lambda_i + t_i) A_i, (g_v + \sum_{i=1}^{\ell} t_i g_{i,v})_{v \in \Sigma_K} \right) \in \widehat{\mathrm{Div}}(X)_{\mathbb{Q}}
$$

is an adelic Q-Cartier divisor. Note that \overline{D}_t is semi-positive. By the above, we have $\zeta_{\text{abs}}(\overline{D}_{t}) = \theta(\overline{D}_{t})$. Letting ε tend to zero, we find that $\zeta_{\text{abs}}(\overline{D}) = \theta(\overline{D})$ by continuity of ζ_{abs} and θ (Lemma [4.1](#page-8-0) [\(2\)](#page-8-3) and Lemma [6.2](#page-12-0) [\(3\)](#page-12-3)).

Remark 6.3. In the proof of Theorem [6.1,](#page-11-0) we used a particular case of a theorem of Chen and Moriwaki [\[CM18\]](#page-14-6), which generalizes Zhang's arithmetic Nakai-Moishezon criterion [\[Zha95a,](#page-14-1) Theorem 4.2]. Using Zhang's original result would have required extra work since it involves stronger assumptions on the metrics.

We now deduce a refinement of Theorem [1.1](#page-1-1) from Theorems [5.1](#page-10-0) and [6.1.](#page-11-0)

Corollary 6.4. Let $\overline{D} = (D,(g_v)_{v \in \Sigma_K})$ be a semi-positive adelic R-Cartier divisor on X. The following conditions are equivalent:

- (1) \overline{D} is ample;
- (2) $h_{\overline{D}}(Y) > 0$ for every subvariety $Y \subseteq X$;
- (3) D is ample and $\inf_{Y \subseteq X} h_{\overline{D}}(Y) > 0$, where the infimum is over all subvari $eties Y \subseteq X;$
- (4) D is ample and $\zeta_{\text{abs}}(\overline{D}) > 0$.

Proof. The assertion $(2) \Leftrightarrow (3) \Leftrightarrow (4)$ is given by Lemma [3.9](#page-6-3) and Theorem [5.1.](#page-10-0) The implication $(1) \Rightarrow (4)$ $(1) \Rightarrow (4)$ $(1) \Rightarrow (4)$ is Lemma [3.13,](#page-7-2) so it only remains to prove $(4) \Rightarrow (1)$. If [\(4\)](#page-13-4) holds, then $\theta(\overline{D}) = \zeta_{\text{abs}}(\overline{D}) > 0$ by Theorem [6.1](#page-11-0) and therefore \overline{D} is w-ample by definition of $\theta(\overline{D})$. Since \overline{D} is also semi-positive, it is ample.

Remark 6.5. In [\[BGMPS16,](#page-14-4) Definition 3.18 (2)], the authors defined arithmetic ampleness by using the notion of metrized divisors generated by small R-sections. It is straightforward to check that if $\overline{D} \in \widehat{\text{Div}}(X)_\mathbb{R}$ is ample in the sense of Definition [3.10,](#page-7-3) then it is ample in the sense of [\[BGMPS16\]](#page-14-4). On the other hand, if \overline{D} is ample in the sense of [\[BGMPS16\]](#page-14-4), then clearly $\zeta_{\text{abs}}(\overline{D}) > 0$. Therefore, Corollary [6.4](#page-13-1) implies that our definition of arithmetic ampleness coincides with the one of [\[BGMPS16,](#page-14-4) Definition 3.18 (2)].

We conclude this article with two direct consequences of our results.

Corollary 6.6. Let $\overline{D} = (D,(g_v)_{v \in \Sigma_K}) \in \widehat{\text{Div}}(X)_{\mathbb{R}}$ be semi-positive and let $\overline{A} \in$ $\widehat{\mathrm{Div}}(X)_{\mathbb{R}}$ be w-ample. The following assertions are equivalent:

- (1) \overline{D} is ample;
- (2) D is ample and there exists a real number $\varepsilon > 0$ such that $h_{\overline{D}}(x) \geq \varepsilon h_{\overline{A}}(x)$ for any $x \in X(\overline{K})$.

Proof. [\(1\)](#page-13-6) \implies [\(2\)](#page-13-7): By Lemma [3.11,](#page-7-1) there exists a real number $\varepsilon > 0$ such that $\overline{D} - \varepsilon \overline{A}$ is w-ample. By Lemma [3.13,](#page-7-2) we have

$$
\widehat{h}_{\overline{D}}(x) - \varepsilon \widehat{h}_{\overline{A}}(x) = \widehat{h}_{\overline{D} - \varepsilon \overline{A}}(x) > 0
$$

for any $x \in X(\overline{K})$.

[\(2\)](#page-13-7) \implies [\(1\)](#page-13-6): Since \overline{A} is w-ample, $\zeta_{\text{abs}}(\overline{A}) > 0$ by Lemma [3.13.](#page-7-2) Assumption (2) therefore implies that $\zeta_{\text{abs}}(\overline{D} - \varepsilon' \overline{A}) > 0$ for any $\varepsilon' \in (0, \varepsilon)$. By Lemma [4.1](#page-8-0) [\(1\)](#page-8-2), it follows that

$$
\zeta_{\rm abs}(\overline{D}) \ge \zeta_{\rm abs}(\overline{D} - \varepsilon' \overline{A}) + \zeta_{\rm abs}(\varepsilon' \overline{A}) > 0,
$$

and therefore \overline{D} is ample by Corollary [6.4.](#page-13-1)

Corollary 6.7. Let $\overline{D} = (D,(g_v)_{v \in \Sigma_K}) \in \widehat{\text{Div}}(X)_\mathbb{R}$ be semi-positive. The following assertions are equivalent:

(1) $\zeta_{\text{abs}}(\overline{D}) \geq 0$; (2) $\overline{D} + \overline{A}$ is ample for any ample $\overline{A} \in \widehat{\text{Div}}(X)_{\mathbb{R}}$.

Proof. [\(1\)](#page-14-11) \implies [\(2\)](#page-14-12): Let $\overline{A} \in \widehat{\text{Div}}(X)_{\mathbb{R}}$ be ample. Then the underlying divisor A of \overline{A} is ample. Since D is nef by semi-positivity of \overline{D} , $D + A$ is ample. Moreover we have

$$
\zeta_{\text{abs}}(\overline{D} + \overline{A}) \ge \zeta_{\text{abs}}(\overline{D}) + \zeta_{\text{abs}}(\overline{A}) \ge \zeta_{\text{abs}}(\overline{A}) > 0,
$$

where the last inequality is given by Lemma [3.13.](#page-7-2) By Corollary [6.4,](#page-13-1) $\overline{D} + \overline{A}$ is ample. [\(2\)](#page-14-12) \implies [\(1\)](#page-14-11): Let $x \in X(\overline{K})$ be a closed point. We want to prove that $\widehat{h}_{\overline{D}}(x) \geq 0$.

Let $\overline{A} \in \widehat{\text{Div}}(X)_{\mathbb{R}}$ be ample and semi-positive and let $\varepsilon > 0$ be a real number. Since $\overline{D} + \varepsilon \overline{A}$ is ample, we have

$$
\widehat{h}_{\overline{D}}(x) + \varepsilon \widehat{h}_{\overline{A}}(x) = \widehat{h}_{\overline{D} + \varepsilon \overline{A}}(x) > 0,
$$

and we conclude by letting ε tend to zero.

A semi-positive adelic R-Cartier divisor satisfying $\zeta_{\text{abs}}(\overline{D}) \geq 0$ is usually called nef in the literature [\[Mor16,](#page-14-2) Definition 4.4.1]. Roughly speaking, Corollary [6.7](#page-14-13) asserts that an adelic R-Cartier divisor is nef if and only if it is the limit of a sequence of ample adelic R-Cartier divisors.

REFERENCES

Francois Balla \ddot{v}

Universit´e Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France. francois.ballay@uca.fr

fballay.perso.math.cnrs.fr