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DIVISORS
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ABSTRACT. We prove a Nakai-Moishezon criterion for adelic R-Cartier divi-
sors, which is an arithmetic analogue of a theorem of Campana and Peternell.
Our main result answers a question of Burgos Gil, Philippon, Moriwaki and
Sombra. We deduce it from the case of adelic Cartier divisors (due to Zhang)
by continuity arguments and reductions involving a generalization of Zhang’s
theorem on successive minima.

1. INTRODUCTION

In algebraic geometry, the Nakai-Moishezon criterion asserts that a Cartier di-
visor D € Div(X) on a projective variety X over an algebraically closed field
is ample if and only if DY™Y .Y > 0 for every subvariety ¥ C X. By a
theorem of Campana and Peternell [CP90], this statement remains valid when
D € Div(X)r = Div(X) ®z R is a R-Cartier divisor. In [Zha95a], Zhang started
the study of arithmetic ampleness in the context of Arakelov geometry, and proved
an arithmetic Nakai-Moishezon criterion for adelic metrized line bundles ([Zha95a,
Theorem 4.2]). Our purpose is to extend this result to adelic R-Cartier divisors (in
the sense of Moriwaki [Mor16]), thus proving an arithmetic analogue of Campana
and Peternell’s theorem.

Let X be a normal and geometrically integral projective scheme over a number
field K. An adelic R-Cartier divisor D = (D, (g,),) on X is a pair consisting of a
R-Cartier divisor D € Div(X)g and a suitable collection of Green functions (g,)y
on the analytifications X3" of X, where v runs over the set of places of K (see
Definition 3.1). The set I/)E(X )r of adelic R-Cartier divisors is a R-vector space;

it contains the set of adelic Cartier divisors ]SFI(X ), defined by
Div(X) = {(D, (g5)») € Div(X)g | D € Div(X)} C Div(X)g.

To any adelic Cartier divisor D € f)E(X ) we can associate an adelic metrized
line bundle (Ox (D), (||.||P),) in the sense of Zhang [Zha95b], and a global section
s € H°(X, D) of Ox (D) is called strictly small if SUP¢ xan Is|P(z) <1 for every
place v, with strict inequality at archimedean places. We say that an adelic R-
Cartier divisor D is ample if it is semi-positive (see Definition 3.4) and if it can be

written as a finite sum
¢
D= M4,
i=1

where for each i € {1,...,0}, \; € Ryg and 4; = (A;,(giv)v) € ]SR/(X) is an
adelic Cartier divisor such that A; € Div(X) is ample and H°(X,mA;) has a
K-basis consisting of strictly small sections for every m > 1. This definition of
ampleness for adelic R-Cartier divisors coincides with the one used in [BGMPS16]

(see Remark 6.5). For any semi-positive D = (D, (g,),) € ]Si;(X)R and for any
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subvariety Y C X, we denote by hy(Y) the height of Y with respect to D (see
section 3.2). The main result in this paper is the following (see Corollary 6.4).

Theorem 1.1. Let D = (D, (gy)v) be a semi-positive adelic R-Cartier divisor on
X. Then D is ample if and only if hi5(Y) > 0 for every subvariety Y C X.

This theorem gives an affirmative answer to a question of Burgos Gil, Moriwaki,
Philippon and Sombra [BGMPS16, Remark 3.21]. To our knowledge, it was known
only under one of the following additional assumptions up to now:

e D is an adelic Cartier divisor (Zhang’s arithmetic Nakai-Moishezon criterion
[Zha95a, Theorem 4.2], [Mor15, Corollary 5.1], [CM18, Theorem 1.2]);

e D is a toric metrized R-Cartier divisor ([BGMPS16, Corollary 6.3]);
e X has dimension one ([Iko21, Corollary A.4]).
Given a semi-positive adelic R-Cartier divisor D = (D, (¢,),) on X and a subvariety
Y C X with degp(Y) := DImY .y £ 0, the normalized height of Y with respect
to D is defined by
~ h5(Y)
hi(Y) = L :
p(Y) (dimY + 1)degp(Y)
We also let Caps(D) = inf, . X(R) ﬁﬁ(x). The following theorem is our second main

result, which plays an important role in this paper and might be of independent
interest.

Theorem 1.2. Let D = (D, (g,),) be a semi-positive adelic R-Cartier divisor on
X. If D is ample, there exists a subvariety Y C X such that

Cabs(D) = hp(Y) = min hp(2),
where the minimum s over the subvarieties Z C X.

In other words, the infimum of the normalized heights of subvarieties Z C X
is attained at a subvariety Y, which moreover satisfies /ﬁﬁ(Y) = Caps(D). Our
proof of Theorem 1.2 is based on Zhang’s theorem on successive minima [Zha95a,
Theorem 5.2]. Although the latter does not appear in the literature for adelic R-
Cartier divisors, we shall prove that it remains valid in this context thanks to a
continuity property for successive minima (see Lemma 4.1 and Theorem 4.3). This
approach also provides additional information on the subvariety Y C X of Theorem
1.2 (see Theorem 5.1). Our proof of Theorem 1.1 is very direct, and goes roughly
as follows. Let D = (D, (gy)») € ﬁiT/(X)R be semi-positive, with D ample. Given
a real number t € R, we define an adelic R-Cartier divisor D(t) by rescaling the
metrics at archimedean places to have ﬁb(t)(Y) = EB(Y) —t for every subvariety
Y C X (see Definition 3.3 and Lemma 3.7). In view of Theorem 1.2, it suffices to
prove that

sup{t € R | D(t) is ample} = Caps(D).
We denote by 6(D) the supremum on the left hand side. We first observe that
Zhang’s arithmetic Nakai-Moishezon criterion [Zha95a, Theorem 4.2] implies that
0(D) = Cabs(D) provided that D is an adelic Cartier divisor. We simply deduce the
general case (Theorem 6.1) by slightly perturbing D and by applying a continuity
property for the invariants (.ps(D) and (D) (see Lemmas 4.1 and 6.2).

Organization of the paper. We fix some notation in section 2. In section 3
we recall the definition of adelic R-Cartier divisors and of height of subvarieties.
We also study some basic properties of ample adelic R-Cartier divisors. We define
successive minima in section 4, and we establish a continuity property allowing us
to extend Zhang’s theorem on minima to adelic R-Cartier divisors (Lemma 4.1 and
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Theorem 4.3). We prove Theorem 1.2 in section 5 (Theorem 5.1) and Theorem 1.1
in section 6 (Corollary 6.4).

2. CONVENTIONS AND TERMINOLOGY

2.1. We say that a scheme is integral if it is reduced and irreducible. Given a
Noetherian integral scheme X, we denote by Div(X) the group of Cartier divisors
on X and by Rat(X) the field of rational functions on X. If K denotes Z, Q or
R, we let Div(X )k = Div(X) ®z K. The elements of Div(X)g are called K-Cartier
divisors on X. If X is normal, we denote by Supp D the support of a K-Cartier
divisor D (see [Morl6, section 1.2] for details). It is a Zariski-closed subset of X.
We let (¢) be the Cartier divisor associated to a rational function ¢ € Rat(X)*.

2.2. Let X be a projective variety over a field K, i.e. X is an integral projective
scheme on Spec K. A subvariety Y C X is an integral closed subscheme of X. Given
an integer r € {0,...,dim X}, a r-cycle is a formal linear combination with integer
coeflicients of r-dimensional subvarieties in X. Given a K-Cartier divisor D on X,
we define the degree of a r-cycle Z with respect to D by degp,(Z) = D¥mZ. 7 In

particular, if x € X(K) is a closed point (considered as a subvariety of X), then
degp({z}) = [K(x) : K] is the degree over K of the residue field K(x) of z € X.

2.3. Throughout this text, we fix a number field K and an algebraic closure K
of K. We denote by Yk the set of places of K and by ¥k, C Xk the set of
archimedean places. For each v € Xk, we let K, be the completion of K with
respect to v and we denote by |.|, the unique absolute value on K, extending the
usual absolute value |.|, on Q, : |p|, = p~! if v is a non-archimedean place over a
prime number p, and |.|, = |.| is the usual absolute value on R if v is archimedean.

2.4. Let X be a scheme on Spec K. For each v € Yk, we let X, = X X g Spec K,
be the base change of X to K,, and we denote by X2 the anylitification of X, in
the sense of Berkovich (see [Morl6, section 1.3] for a short introduction). Given a
closed point z € X, we let z®" € X" be the point corresponding to the unique
absolute value on K, (x) extending |.|,.

2.5. Let X be a normal projective variety on Spec K. Let D € Div(X)g, v € Xk
and let D,, € Div(X,)gr be the pullback of D to X,. We consider an open covering
X, = UleUi such that D, is defined by f; € Rat(X,)* ®z R on U; for each
i€{1,...,£}. A continuous D-Green function on X2" is a function

go: X"\ (Supp D,,)*" = R

such that g, + In|f;|2 extends to a continuous function on the analytification U2®
of U; for each i € {1,...,£}. When v is archimedean, we say that g, is smooth
(respectively plurisubharmonic) if the extension of g, + In|f;|? to U is smooth
(respectively plurisubharmonic) for each i € {1,...,¢}. We refer the reader to
[Mor16, sections 1.4 and 2.1] for more details on Green functions.

2.6. Let X be a normal projective variety on Spec K. Let D € Div(X)x and
let U C Spec Ok be a non-empty open subset, where O is the ring of integers
of K. A normal model X of X over U is an integral normal scheme X together
with a projective dominant morphism 7y : X — U with generic fiber X. If D is a
K-Cartier divisor on X such that the restriction of D to X is equal to D, we say
that (X, D) is a normal model of (X, D) over U. For each non-archimedean place
v € U, we denote by gp,, the D-Green function on X2" induced by D (see [Morl6,
section 0.2] for details on this construction).



4 FRANCOIS BALLAY

3. ADELIC R-CARTIER DIVISORS

In the rest of the text, we consider a normal and geometrically integral projective
variety X over the number field K. We define adelic R-Cartier divisors in subsection
3.1. We then recall the notion of semi-positive adelic R-Cartier divisors and we
define heights of subvarieties in subsection 3.2. Subsection 3.3 contains basic facts
concerning ample adelic R-Cartier divisors.

3.1. Definitions. In this paragraph, K denotes either Z, Q or R.

Definition 3.1. An adelic K-Cartier divisor on X is a pair D = (D, (gs)vexy)
consisting of a K-Cartier divisor D on X and of a continuous D-Green function
gp on X2" for each v € Tk, satistying the following condition: there exist a dense
open subset U of Spec Ok and a normal model (X, D) of (X, D) over U such that
gv = gp,y forallv e U.

The set of adelic K-Cartier divisors on X is a K-module, denoted by ]SR/(X K-
Since X is normal, the natural map Div(X) — Div(X)x is injective. It follows
that ]SRI(X)Z C ﬁR(X)@ C ﬁz(X)R. In the sequel, the elements of ]5;()() =
ﬁ/(X )z will be called adelic Cartier divisors for simplicity.

Let D = (D, (gy)ves,) be an adelic R-Cartier divisor on X. We consider the
K-vector space

H°(X,D) :={¢ € Rat(X)* | D+ (¢) >0} U{0}.

For any ¢ € (Rat(X)* ®z R)U {0} and any v € Yk, we let ¢, be the pullback of
¢ on X and we consider the function ||¢]|2 := |¢y|, exp(—gs/2), defined on an
open subset of X2 If ¢ € H°(X, D), the function ||¢]|2 extends to a continuous
function on X3" (see [Morl6, Propositions 1.4.2 and 2.1.3]). In that case, we let
M”Bsup = SupIEXf;“ |
D by

|6]|2 (). We also define the set of strictly small sections of

H°(X,D) = {$ € H'(X,D) | ]| Dsup <1 Y0 € Tt (Ml sup < 1 V0 € T}

Remark 3.2. Let D € ]SRI(X) be an adelic Cartier divisor. With the above

notation, the pair (Ox (D), (||.|?)vesy) is an adelic metrized line bundle in the
sense of Zhang [Zha95b, (1.2)]. One can see that every adelic metrized line bundle
L= (L,(||.]ls)vesy) on X can be obtained in this way by considering the Cartier
divisor D = div(s) associated to a trivialization s of L and the D-Green functions
gv = —1In||s,||? for every v € Xk, where s, is the pullback of s to X2".

We end this paragraph with the definition of twists of adelic R-Cartier divisors,
which we shall use frequently in the rest of the text.

Definition 3.3. Let D € ﬁ(X)R. For any real number ¢t € R, we define the
t-twist of D by

D(t) =D — t€, € Div(X)g,
where € = (0, (&,)vexy ) is the adelic Cartier divisor on X given by &, = 2 if v is

archimedean, and &, = 0 otherwise.

It follows from the definitions that for any ¢ € H°(X, D), we have ||¢||Uﬁ(t) =

et||||P for every v € Lk o and ||¢||?(t) = ||¢||P for every v € Lk \ Lk 0.
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3.2. Semi-positivity and heights of subvarieties. Let us first define the height
of a point z € X (K) with respect to an adelic R-Cartier divisor D on X. Let ¢ €
Rat(X)* ®z R be a function with « ¢ Supp(D + (¢)) and let K (x) be the function
field of 2 € X. For each place w € ¥k (), we fix a K-embedding o,,: K(x) — K,
where v denotes the restriction of w to K (note that there are exactly [K(x)y : K]
such embeddings). The pair (z,0,) determines uniquely a point z,, € X,, and

the quantity ||¢[|2(z) = ||¢[|2(z) does not depend on the choice of o,,. The
normalized height of 2 with respect to D is the real number

T [K(2)w : Qu] D
hplz)=— Y = In[g]|D ().
wern,, E@):Q
This definition does not depend on the choice of ¢ by [Morl6, (4.2.1)]. Moreover,
if € H°(X, D) \ {0} then it follows from the definitions that

o [Kv : @v] D
3.1 hs(z) > — ————— 1n||}]|5 sup-
vEX K
In order to define the height of higher dimensional subvarieties, we need the notion
of semi-positive adelic R-Cartier divisors which we recall below.

Definition 3.4. Let D = (D, (gy)vesy) € ]SR/(X)R. We say that D is semi-positive
if there exists a sequence (X,,, Dy, (gn,v)vesy Jnen such that :
e for all n € N, (X,,D,,) is a normal Spec Ox-model for (X, D) with D,
relatively nef,
e for all n € N, g, , is a smooth plurisubharmonic D-Green function if v €
YK,00 and gn o = gp, o for every non-archimedean v € X,
o for every v € Xk, (gnv)nen converges uniformly to g,.

Remark 3.5.
(1) It follows from the definition that the sum of semi-positive adelic R-Cartier
divisors is semi-positive. Moreover, if D € ]SRI(X )r is semi-positive then
D(t) is semi-positive for any ¢t € R.
(2) An adelic Cartier divisor D € Div(X) is semi-positive if and only if the
associated line bundle (Ox (D), (||.|?)vex, ) of Remark 3.2 is semi-positive
in the sense of Zhang [Zha95b, (1.3)] (see [BGMPS16], (1) page 229).

Following [BGMPS16], we say that an adelic R-Cartier divisor D on X is DSP
if D = D; — D> is the difference of two semi-positive Dq, Dy € [/)FI(X)R. Let D be
a DSP adelic R-Cartier divisor on X and let Y C X be a r-dimensional subvariety,
where 0 < r < dim X is an integer. For any place v € Y, we define a measure
c1(D)MHmY A yan on X3 as in [BGMPS16, page 225]. It is obtained by multi-
linearity from the corresponding measures associated to semi-positive adelic Cartier
divisors defined in [BGPS14, Definition 1.4.6]. The measure ¢;(D)" ™Y A §yan is
supported on Y2 C X3 and has total mass degp(Y).

Let ® = (¢o,...,¢,) € (Rat(X)* ®z R)®" be a family intersecting Y properly

in the following sense: for every I C {0,...,r},
YN (ﬂ Supp((¢:) + D))
iel

is of pure dimension r — #1. The local height hp o ,(Y) of Z at v with respect to
(D, ®) is defined inductively as follows. We put h5.¢.,(0) =0, and

(8:2) 1 0,,(Z) = I gy, .1, (Y -(DH(60))) - /X In [ gol|Pes (D) 4™ Adyzn.
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It follows from [BGPS14, Proposition 1.5.14] that hp 4 ,(Y) = 0 for all except
finitely many places v € Yx. The height of Y with respect to D is the real number

o) = ¥ e )
VEX K

it does not depend on the choice of ®. If Y C X is a subvariety with degp, (Y)#0,
the normalized height of Y with respect to D is the real number

- B h(Y)
holV) = (dimY +D1) deg (V)

Remark 3.6.
(1) IfY = {z} is a closed point in X, then ﬁﬁ(Y) coincides with the normalized
height ﬁﬁ(.ﬁ(}) of z.
(2) The height function is continuous in the following sense: for any DSP adelic
R-Cartier divisor D on X , we have

lim h5+t5/ (Y) = hE(Y)

-0
If moreover degp(Y') # 0, then degp,,p/(Y) # 0 for any sufficiently small
t € R and we have lim; 0 h5 57 (Y) = hi(Y).
(3) Assume that D € ISR/(X)R is semi-positive, and let

(Xna D'rn (gn,v)UGZK)nGN
be a sequence as in Definition 3.4. Given n € N, let D,, = (D, (gnv)vesy)-
Then we have lim,, . b5 (Y) = h(Y), and moreover lim,, o b (Y) =
h(Y) if degp(Y) # 0.
(4) Assume that D = (D, (gy)vesy ) € Div(X) is a semi-positive adelic Cartier
divisor such that there exists a Spec Og-model (X, D) of (X, D) with g, =
gD,y for every non-archimedean place v € ¥ . Then

L= (0x(D), (I )vess. )
is a semi-positive hermitian line bundle in the sense of [Zha95a] and we
have hi5(Y) = ¢1(Ly)"™Y, where Y is the Zariski-closure of Y in X (see
[Zha95a, (1.2)] for the definition of ¢ (L}y)d™Y).

We have the following lemma concerning the behaviour of heights with respect
to twists of adelic R-Cartier divisors (see Definition 3.3).

Lemma 3.7. Let D = (D, (gy)vex, ) be a DSP adelic R-Cartier divisor on X and
let Y C X be a subvariety. For anyt € R, we have

hsw(Y) = hp(Y) —t(dimY + 1) degp (Y).
In particular, if degp(Y) # 0 then Eﬁ(t)(Y) = ﬁﬁ(Y) —t.
Proof. The result follows from (3.2) by induction on dimY. O

Let r € {0,...,dim X} and let Z be a r-cycle in X7z = X X Spec K. There
exists a finite extension K’ of K such that Z is defined over K’, i.e. Z is a r-cycle
in Xg = X X Spec K': there exists integers a1, ..., a, and subvarieties Y7,...,Y;
of Xg such that Z = Zle aiYif. Given a DSP D € ISiT/(X)R7 we define a DSP
adelic R-Cartier divisor Dy by pulling back D to Xg+. The height of Z with
respect to D is then defined by h5(2) = Zle aihp ,(Y;). This definition does
not depend on the choice of K’ by [BGPS14, Proposition 1.5.10].



NAKAI-MOISHEZON CRITERION FOR ADELIC R-CARTIER DIVISORS 7

Lemma 3.8. Let D be a DSP adelic R-Cartier divisor on X. The following con-
ditions are equivalent:

(1) h5(Y) > 0 for every subvariety Y C X;

(2) h5(Y) >0 for every subvariety Y C X4

Proof. The implication (2) = (1) is clear. Assume that (1) holds and let Y C X3
be a subvariety. Let Gal(K/K) be the set of K-automorphisms o: K — K. For
any o € Gal(K/K), we denote by Y the pullback of Y by the automorphism of
X7 induced by o; it is a subvariety of X4. We consider the set

OY)={Y | 0 € Gal(K/K)}.

It follows easily from the definitions that h5(Y') = h(Y) for any Y' € O(Y)
(alternatively, this fact is a direct consequence of [BGPS14, Theorem 1.5.11]). By

[BG06, A.4.13],
Ty = U Yy’

Y/€O(Y)
is a subvariety of X (i.e. its image in X is an irreducible Zariski closed subset of X,
which we still denote by Zy ). Therefore hi7(Zy) > 0 by assumption. Let K’ be a
finite extension such that every Y’ € O(Y) is a subvariety of Xg-. Let (Zy )k be
the cycle in Xk associated to Zy: we have

(Zy)k = Z ny Y,

Y’eOo(Y)

where ny/ is a positive integer for every Y’ € O(Y). By [BGPS14, Proposition
1.5.10], we have h5((Zy ) k') = hp(Zy) > 0. On the other hand, we have

hs(Zy)k) = Y nyhp(Y) =hp(Y)x Y ny,

Y’'eO(Y) Y’eO(Y)

and therefore h5(Y") > 0. O

We end this paragraph with a sufficient condition for the ampleness of the un-
derlying divisor of an adelic R-Cartier divisor.

Lemma 3.9. Let D = (D, (gy)vex,) € 517/(X)R be semi-positive. Assume that
hi(Y) > 0 for every subvariety Y C X. Then D is ample.

We want to combine Campana and Peternell’s Nakai-Moishezon criterion for R-
Cartier divisors [CP90] with Moriwaki’s generalized Hodge index theorem [Mor16,
Theorem 5.3.2] applied to subvarieties of X. We must pay attention to the fact
that [Morl6, Theorem 5.3.2] applies only to normal and geometrically integral
subvarieties.

Proof. Let Y C X3 be a subvariety and let K’ be a finite extension of K such
that Y is defined over K’. We consider the adelic R-Cartier divisor Dys =
(Dr, (gw)wes,,,) defined by pulling back D to Xg+. Let f: Y’ — Y be the nor-
malization of Y and let ¢ € Rat(Xg/)* ®z R be such that Y ¢ Supp(Dg+ + (¢)).
Note that Y’ is normal and geometrically integral. We define a semi-positive
adelic R-Cartier divisor Dy = (Dy+, (9y" w)wes,,) on Y as follows: Dy, =
[*(Dkr 4 (¢)))y and for each w € X/, the Dy/-Green function gy, is the pull-
back of (g — 21 [@|y)yan to (V). By [BGPS14, Theorem 1.5.11 (2)], we have
hp,, Y") = hp,,(Y). Therefore our assumption together with Lemma 3.8 implies

that hp Y = hp,,(Y) > 0. It follows from [Mor16, Theorem 5.3.2] that Dy is
big in the sense of [Morl6, Definition 4.4.1]. In particular, Dy is big. Since Dy~
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is also nef by semi-positivity, we have DY .y = DEmY' .y > (. Therefore D
is ample by [CP90, Theorem 1.3].
O

3.3. Ample adelic R-Cartier divisors. We now define ample adelic R-Cartier
divisors and study some of their properties.

Definition 3.10. Let D = (D, (g,)ves,) be an adelic R-Cartier divisor. We say
that D is
e weakly ample (w-ample for short) if D = Zle A\ A; is a R-linear combina-
tion of adelic Cartier divisors A; € ]S;I(X) such that for each i € {1,...,/¢},
i > 0, A; is ample and for every m > 1, H°(X, mA;) has a K-basis con-
sisting of strictly small sections;
e ample if it is w-ample and semi-positive.

The terminology of weakly ample adelic R-Cartier divisors is due to Ikoma
[Iko21].We end this section with three lemmas concerning basic properties of w-
ample adelic R-Cartier divisors.

Lemma 3.11. Let D, D e ISR(X)R. If D is w-ample, there exists a real number
e >0 such that D +tD s ample for any t € R with [t| <e.

Proof. Without loss of generality, we only consider the case where D e ]SR/(X )
and t > 0. If D is w-ample, D = Zle \iA; is a R-linear combination with positive
coefficients of adelic Cartier divisors A4; € EITI(X) such that for each i € {1,...,¢},
A; is ample and HY(X, mA;) has a K-basis consisting of strictly small sections for
m > 1. By [Ikol6, Proposition 5.4 (5)], there exists a § > 0 such that A; + 6D is
w-ample. Let € = d\;. Then for every real number ¢ € [0, €],

t

— —
DD =
+ 5

0
)Z1 + Z /\iZi

=2

(A; 4+ 6D') + (A —

SIS

is w-ample. O

Remark 3.12. By Lemma 3.11 and [Mor16, Lemma 1.1.1], an adelic Cartier divisor
D = (D,(gv)vexy) € Div(X) on X is w-ample if and only if D is ample and
H°(X,mD) has a K-basis consisting of strictly small sections for every m > 1.

Lemma 3.13. Let D be a w-ample adelic R-Cartier divisor on X. Then

inf  hp(x) > 0.
ze€X(K)
Proof. By definition, we can write D = Zle i A; where for each i € {1,...,0}, \;
is a positive real number, A; is an adelic Cartier divisor such that A; is ample, and

H°(X,mA;) has a K-basis consisting of strictly small sections for every m > 1.
Let m > 1 be an integer such that for each i € {1,...,¢}, there exists a set of

functions ¢; 1,..., ik € ﬁO(X, mA;) with
ki
() Supp(mA; + (¢:7)) = 0.
j=1

Letting
> B oz, >0,

ma. . v,sup
1<i<h S [K: Q)
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we have ﬁ;i (r) > A;/m for every € X (K) (see (3.1)). Therefore we have

14
1=1

zeX(K) z€X(K)

O

Lemma 3.14. Let D = (D, (gy)vexy) be an adelic R-Cartier divisor. If D is
ample, there exists a real number t € R such that D(t) is w-ample.

Proof. Since D is ample, there exists an ample A € m(X)R such that D — A €
Div(X)g and D — A is ample. For a sufficiently large and divisible integer m,
m(D — A) is a very ample Cartier divisor on X. Let (¢1,...,¢¢) be basis of
H°(X,m(D — A)) such that ||¢i|\vm75(£;’4) < 1 for every i € {1,...,¢} and every
non-archimedean place v € Y. Let ¢t € R be a real number such that

m(D—A)

t < — max max In H(b’i”v,sup

1<i<LVESK oo

Then ¢; € HO(X, m(D — A)(t)) for every i, and it follows that A, := (D — A)(¢)
D(t) — A is ample. Therefore D(t) = A + ZQ is ample.

oo

4. ZHANG’S THEOREM ON SUCCESSIVE MINIMA

In this section we recall the notion of successive minima for adelic R-Cartier
divisors, which was first introduced by Zhang for hermitian line bundles [Zha95a,
section 5]. We then prove a continuity property which allows to extend Zhang’s
theorem on minima [Zha95a, Theorem 5.2] to the case of adelic R-Cartier divisors
(see Lemma 4.1 and Theorem 4.3 below).

Let D € ]SR(X)R and let Z C X be a subvariety. For any ¢ € {1,...,dim Z+1},
we define the i-th successive minimum of D on Z by

G(D,Z)= sup inf /ﬁﬁ(l‘) e RU{-o0},
YCZ 2€Z(R)\Y
dimY<i—1

where the supremum is over all the Zariski-closed subsets Y C Z of dimension
dimY < i — 1. We obtain a chain of real numbers

Caimz+1(D, Z) > Cimz(D, Z) > --- > (1(D, Z).
Successive minima satisfy the following properties.
Lemma 4.1. Let D = (D, (gy)vesy) € ]Si\v(X)R. Let Z C X be a subvariety and
let 1 <i<dimZ+1 be an integer.
(1) For any D e ]SFI(X)]R, we have
G(D+D',2)2 (D, 2)+G(D', 2).
(2) Let Dy,...,Dy € ﬁi\V(X)R. If D is ample, then

max{|t1[,...,|te|}—0
Proof. (1) We may assume that (;(D,Z) > —oo and Ci(ﬁ/,Z) > —oo. Let t <
G(D,Z) and t' < Ci(ﬁ/, Z) be real numbers. By definition, there exist two closed

subsets Y, Y’ C Z of dimension < ¢ — 1 such that for any z € Z(K) \ (Y UY”’), we
have
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Since dim(Y UY”’) < i — 1, we have

GMD+D,2)>  inf hp(a) > t+ 1,
zeZ(R)\(YUY")
and we conclude by letting ¢ and ¢’ tend to ¢;(D, Z) and ¢;(D, Z).

(2) If we replace D by D(t) for some real number ¢, both sides of the equality
differ by —t. By Lemma 3.14, we may therefore assume that D is w-ample. Let
€ > 0 be a real number. For t¢1,...,t, € R small enough, the adelic R-Cartier
divisors

(14+e)D—(D+tDy+ - +t,Dy) =eD — (t4D1 + - - + t4Dy)
and B B o L o o
D+t1D1+"‘+t2Dé_ (1—5)D25D+(t1D1 +"'+t@Dz)
are w-ample by Lemma 3.11. Combining (1) and Lemma 3.13, we have
(14)¢(D,2) > (D +t1D1+ -+ t4Dy, Z) > (1 — €)i(D, 2)
and the result follows. O

Remark 4.2. Let D = (D, (gy)vesy) € ]SR/(X)R*be semi-positive. We consider
a sequence (X, Dy, (gn.v)vesy Jnen associated to D as in Definition 3.4. For each
n €N, let D, = (D, (gn.v)vesy ). Then we have

n—oo
for any subvariety Z C X and any ¢ € {1,...,dim Z + 1}. Indeed, the sum
(Ko : Qo
—o 3 Bl ) - g2

& K Q) ex

is finite for every n € N, and the sequence (&, )nen converges to zero. By construc-
tion, we have

h. (x) — en < hp(@) < gy (2) + €n.
for any n € N and x € X(K). It follows that
(D, Z) —en < (D, Z) < (D, Z) +en
as in the proof of Lemma 4.1 (1), and we conclude by letting n tend to infinity.

The following theorem was originally proved by Zhang for adelic Cartier divisors
equipped with Green functions induced by a fixed model [Zha95a, Theorem 5.2].
Thanks to the continuity property of Lemma 4.1, it remains valid for adelic R-
Cartier divisors.

Theorem 4.3. Assume that D = (D, (gy)vesy) € ﬁ(X)R is semi-positive and
that D is ample. For any subvariety Z C X, we have
1 dim Z+1
im ﬁ,Z > h=(4) > ————— iE,Z,
Camza (P2 20D 2 ey 3 6D

Proof. Since D is ample, we can write D = Zle A A; where for each i € {1,...,¢},

Ai € Ryg and A4; € Div(X) is an ample Cartier divisor on X. Let (g;v)ves, be a

collection of A;-Green functions such that A; = (A;, (giv)vesny ) is a semi-positive

adelic Cartier divisor on X. Given a /-tuple of real numbers t = (1, ...,t,) € R’
we denote by Dy = (D, (gs.0)vexy ) the adelic R-Cartier divisor

¢ ‘

Et:E‘i’Z Z: )\+t 17 gv+ztlgiv UEEK

i=1 =

=1
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Let € > 0 be a real number. We can choose t € [0,¢]’ such that Dy € ]5;7()()@.
Note that Dy € Div(X )o is semi-positive. We consider a sequence

(Xt,ny Dt,’ru (gt,n,'u)UEZK )TLEN

associated to Dy as in Definition 3.4, and we let Et,n = (D¢, (gt.np)vesyk) €
Div(X)g. Let m be a positive integer such that mDy, € Div(X). By [Morl5,

Theorem 0.2], the hermitian metrized line bundle Zm,t,n associated to mDy 5, in
Remark 3.6 (4) is semiample metrized in the sense of [Zha95a, section 5]. Therefore
we can apply [Zha95a, Theorem 5.2] to the restriction of £y, t, to the closure of Z
in X ,. We obtain

B R 1 dim Z+1 B
(4.1) Caim z+1(MDyn, Z) 2 hy,p5, (Z) 2 TmZ 1 zz; G(mDy p, Z)

for any n € N (see Remark 3.6 (4)). On the other hand we have iALth (2) =
mﬁﬁt (Z) and Ci(mDygpn, Z) = m(i(Dy oy, Z) for any i € {1,...,dim Z + 1}, and
therefore (4.1) remains true for m = 1. Letting n tend to infinity, we obtain

o R 1 dim Z+1 .
Caim z+1(Ds, Z) > hp (Z) > dmZ 1 ; Gi(Ds, Z)

by Remarks 3.6 (3) and 4.2. Letting € tend to zero, the result follows from the
continuity of normalized heights and successive minima given by Remark 3.6 (2)
and Lemma 4.1 (2).

O

5. ABSOLUTE MINIMUM AND HEIGHT OF SUBVARIETIES
For any D € Div(X)g, we call Cus(D) = (D, X) = inf,y ) hp(x) the
absolute minimum of D. The goal of this section is to prove the following statement,
which refines Theorem 1.2 in the introduction.

Theorem 5.1. Let D = (D, (g,)vesy) be a semi-positive adelic R-Cartier divisor
on X. If D is ample, there exists a subvariety Y C X such that

Cas(D) = hp(Y) = pin hs(2),

where the minimum is over the subvarieties Z C X. Moreover, Capns(D) = ¢i(D,Y)
foranyie{l,...,dimY + 1}.

We begin with two preliminary lemmas.

Lemma 5.2. Let D = (D, (gy)vesy) be a semi-positive adelic R-Cartier divisor
on X. Assume that D is ample. Then for any subvariety Z C X, the following
conditions are equivalent:

(1) ﬁﬁ(Y) > 0 for every subvariety Y C Z;

(2) ¢u(D,Z) > 0.

Proof. (1) = (2): If Z = {z} is a point, then (;(D, Z) = ﬁﬁ(x) > (0. We assume
by induction that dim Z > 0 and that ¢;(D,Y) > 0 for every subvariety Y ¢ Z.
Since EB(Z) > 0, it follows from Theorem 4.3 that there exists a closed subset
Y ¢ Z such that infer(f)\Y ?Lﬁ(x) > 0. On the other hand, if Y7,...,Y; are the
irreducible components of Y then

inf  h—(z) = min D.Y;)>0
z€Z(K)NY D( ) 1§iSZ<1( )
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by the induction hypothesis. Therefore we have

(D, Z) =min{ inf hp5(z), inf hp(z)} > 0.
e Z(K)\Y zeZ(K)NY
(2) = (1): Let ¢ = (1(D, Z) > 0. Note that D(¢) = D — (€, is semi-positive
and (1(D(¢), Z) = (1(D, Z) — ¢ = 0. For any subvariety Y C Z we have
ho(Y) 2 G(D(C),Y) > Gi(D(C), Z) = 0,
where the first inequality is given by Theorem 4.3 and the second one follows from
the definitions. By Lemma 3.7, we have

h(Y) = Eﬁ(g) Y)+¢> ﬁﬁ(g)(y) > 0.
(]

Lemma 5.3. Let D = (D, (gy)vesy) be a semi-positive adelic R-Cartier divisor
on X with D ample. Then

Cabs(D) = leglg( h(Z),

where the infimum is over the subvarieties Z C X.

Proof. By Zhang’s Theorem 4.3, we have
h5(2) 2 (D, Z) = Cus(D)

for any subvariety Z C X, and we deduce one inequality of the lemma by taking
the infimum on Z. The converse inequality follows directly from the definition of

Cabs (b) .
O

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let ( = Caps(D) € R. Note that D(¢) is semi-positive and
Cabs(D(€)) = Cabs(D) — ¢ = 0. By Theorem 4.3, we have

D5y (Y) = C(D(C),Y) > Cans(D(C)) = 0
for every subvariety Y C X. By Lemma 5.2 applied to Z = X, there exists a
subvariety Y C X such that hp)(Y) = 0. Therefore Lemma 3.7 gives

CabS(E) = hﬁ(y) - hﬁ(g) (Y) = hﬁ(y)-
The fact that Cups(D) coincides with the minimum in the theorem follows from
Lemma 5.3. Finally, we observe that (;1(D,Y) > Cabs(D) = h5(Y). Therefore

Zhang’s Theorem 4.3 implies that Cu,s(D) = ((D,Y) for every integer 1 < i <
dimY + 1. O

6. PROOF OF THEOREM 1.1

Given an adelic R-Cartier divisor D on X, we introduce the invariant
0(D) :=sup{t € R | D(t) is w-ample} € RU {—o0}

(with the convention that sup() = —oc). The main result of this section is the
following theorem, from which we shall deduce Theorem 1.1 (see Corollary 6.4
below).

Theorem 6.1. Let D = (D, (gy)ves, ) be a semi-positive adelic R-Cartier divisor

on X. If D is ample, then Caps(D) = 0(D).

Before proving this theorem, we gather some basic properties satisfied by the
invariant (D) in the following lemma.
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Lemma 6.2. Let D = (D, (gy)ves,) € ]SFI(X)R.
(1) For any D e ISE(X)R, we have
9(D+D')>0(D)+0(D).
(2) D is ample if and only/iiﬁ(ﬁ) is finite.
(3) Let Dy, Ds,...,D; € Div(X)g. If D is ample, then
(D +t1D1 + -+ +t,Dy) = 6(D).

im
max{|t1|,...,|te|}—0

Proof. (1) Clearly we may assume that (D) > —oc and 9(5/) > —oo. It suffices
to observe that the sum of two w-ample adelic R-Cartier divisors is w-ample.

(2) If 0(D) is finite, then clearly D is ample. Conversely, assume that D is ample.
By Lemma 3.14, there exists ¢ € R such that D(t) is w-ample. Therefore 6(D) > ¢
is finite.

(3) If we replace D by D(t) for some real number ¢, both sides of the equality
differ by —t. By Lemma 3.14, we may therefore assume that D is w-ample. Let
€ > 0 be a real number. For sufficiently small real numbers ¢1,...,t;, the adelic
R-Cartier divisors

(14+e)D—(D+t,Dy+---tyDg) =D — (tyDy + - - - + t¢Dy)
and

D+t1D1+-+tyDp—(1—e)D=eD+ (t1D1 + -+ t¢Dy)
are w-ample by Lemma 3.11. In particular,

0(eD — (t1Dy + -+ +t,D;)) >0 and 0(eD + (t1Dy +---+t4Dy)) >0
by definition of . By (1), we infer that
(1+¢)0(D) > 0(D+t1D1 +---+tDy) > (1 —¢)0(D),

and the result follows. O

Let us now prove Theorem 6.1. We shall combine Zhang’s arithmetic Nakai-
Moishezon criterion [Zha95a, Theorem 4.2] and the continuity property given by
Lemma 6.2 (3).

Proof of Theorem 6.1. Since D is ample, we have §(D) > —oo by Lemma 6.2 (2).
Let ¢ < 0(D) be a real number. By definition, D(¢) is w-ample and Lemma 3.13
gives

Cabs(ﬁ) — 1 = Cabs (ﬁ(t» > 0.
By letting ¢ tend to 8(D), we conclude that Cups(D) > (D).

For the converse inequality, let us first assume that D € BRI(X )g- By homo-
geneity of 0(D) and Caps(D), we may assume that D is an adelic Cartier divisor
without loss of generality. Let t < (ups(D) be a real number. Since (aps(D(t)) =
Cabs(D) —t > 0, we have

hﬁ(t) (Y)>0
for any subvariety Y C X by Lemma 5.2. By [Zha95b, Theorem 1.7] (see also
[Zha95b, Proof of Theorem 1.8]), for any subvariety ¥ C X there exists an integer
n > 0 such that HO(Y, nD(t)y) # 0. By [CM18, Theorem 1.2], D(t) is w-ample.
Therefore §(D) > t, and we conclude by letting ¢ tend to Cups(D).

Let us now prove the equality (aps(D) = (D) in full generality. Since D is ample,
we can write D = Zle A A; where for each ¢ € {1,...,£}, \; € Ry and A; is an
ample Cartier divisor on X. For each ¢ € {1,...,¢}, we equip A; with a collection
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of A;-Green functions (g; ,)ves, such that A; = (A;, (giv)vesyk) € BFI(X) is semi-
positive. For any € > 0, we can find a /-tuple of real numbers t = (t1,...,t,) € [0,¢]*
such that
4 ¢ -
Dy:=D+Y A= (O _(\i+t)Ai, (g + Y tigiw)vess) € Div(X)g
i=1 i=1 i=1

is an adelic Q-Cartier divisor. Note that Dy is semi-positive. By the above, we
have Caps(Dt) = 0(Dy). Letting € tend to zero, we find that (ups(D) = 6(D) by
continuity of (aps and 6 (Lemma 4.1 (2) and Lemma 6.2 (3)). O

Remark 6.3. In the proof of Theorem 6.1, we used a particular case of a theorem of
Chen and Moriwaki [CM18], which generalizes Zhang’s arithmetic Nakai-Moishezon
criterion [Zha95a, Theorem 4.2]. Using Zhang’s original result would have required
extra work since it involves stronger assumptions on the metrics.

‘We now deduce a refinement of Theorem 1.1 from Theorems 5.1 and 6.1.

Corollary 6.4. Let D = (D, (g,)vesy ) be a semi-positive adelic R-Cartier divisor
on X. The following conditions are equivalent:
(1) D is ample;
(2) h5(Y) > 0 for every subvariety Y C X;
(3) D is ample and infycx EB(Y) > 0, where the infimum is over all subvari-
eties Y C X;
(4) D is ample and Caps(D) > 0.

Proof. The assertion (2) < (3) < (4) is given by Lemma 3.9 and Theorem 5.1.
The implication (1) = (4) is Lemma 3.13, so it only remains to prove (4) = (1). If
(4) holds, then (D) = (aps(D) > 0 by Theorem 6.1 and therefore D is w-ample by

definition of §(D). Since D is also semi-positive, it is ample. O

Remark 6.5. In [BGMPS16, Definition 3.18 (2)], the authors defined arithmetic
ampleness by using the notion of metrized divisors generated by small R-sections. It
is straightforward to check that if D € 61;(X )r is ample in the sense of Definition
3.10, then it is ample in the sense of [BGMPS16]. On the other hand, if D is
ample in the sense of [BGMPS16], then clearly (aps(D) > 0. Therefore, Corollary
6.4 implies that our definition of arithmetic ampleness coincides with the one of

[BGMPS16, Definition 3.18 (2)].
We conclude this article with two direct consequences of our results.

Corollary 6.6. Let D = (D, (gy)vesny) € EE(X)R be semi-positive and let A €
JSR/(X)R be w-ample. The following assertions are equivalent:

(1) D is ample;

(2) D is ample and there exists a real number € > 0 such that Tlﬁ(x) > Eﬁz(ﬂ:)

for any x € X(K).

Proof. (1) = (2): By Lemma 3.11, there exists a real number ¢ > 0 such that
D — €A is w-ample. By Lemma 3.13, we have

h5(z) — ehg(x) = hy_5(z) > 0

for any z € X(K).

(2) = (1): Since A is w-ample, (abs(A) > 0 by Lemma 3.13. Assumption (2)
therefore implies that (aps(D — &’A) > 0 for any ¢’ € (0,¢). By Lemma 4.1 (1), it
follows that

Cabs (E) Z Cabs(ﬁ - E/Z) + Cabs (E/Z) > 07

and therefore D is ample by Corollary 6.4. O
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Corollary 6.7. Let D = (D, (gy)ves, ) € ISR(X)R be semi-positive. The following
assertions are equivalent:

(1) Cun(D) > 0; o
(2) D+ A is ample for any ample A € Div(X)g.

Proof. (1) = (2): Let A € 61?7()()]@ be ample. Then the underlying divisor A of
A is ample. Since D is nef by semi-positivity of D, D + A is ample. Moreover we
have

Cabs(D + A) Z Cabs(D) + Cabs(A) 2 Cabs(A) > Oa

where the last inequality is given by Lemma 3.13. By Corollary 6.4, D+ A is ample.

(2) = (1): Let z € X(K) be a closed point. We want to prove that Eﬁ(l’) > 0.
Let A € Div(X)g be ample and semi-positive and let € > 0 be a real number. Since
D + A is ample, we have

~

h(@) + ehz(z) = hpyy 7 (@) > 0,

and we conclude by letting € tend to zero. U

A semi-positive adelic R-Cartier divisor satisfying (aps(D) > 0 is usually called
nef in the literature [Morl6, Definition 4.4.1]. Roughly speaking, Corollary 6.7
asserts that an adelic R-Cartier divisor is nef if and only if it is the limit of a
sequence of ample adelic R-Cartier divisors.
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